#$&*
course MTH-279
08/03, around 11:50PM
Query 26 Differential Equations*********************************************
Question: Find the solutions to y ' = A y when
A = [ 5, 3; -4, -3 ]
and
y(1) = [2; 0].
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
p(lambda) = det[A-lambda I]
lambda = [5, 3; -4, -3] = [lambda, 0; 0, lambda]
A - lambda I = [5, 3; -4, -3] - [lambda, 0; 0, lambda] = [5-y, 3-0; -4-0, -3-lambda] = [5-y, 3; -4, -3-lambda]
det[A - lambda I] = det[5-y, 3; -4, -3-lambda]
= [(5-lambda) * (-3-lambda)] - [(-4 * 3)]
=[-15 - 5lambda + 3lambda + lambda^2] + 12
-15 - 2lambda + lambda^2 + 12 -> -3 -2lambda + lambda^2
lambda^2 - 2 lambda - 3
(lambda + 1)(lambda - 3)
lambda = -1, 3
= det[5-lambda, 3; -4, -3-lambda] -> [5+1, 3; -4, -3+1] = [6, 3; -4, -2]
use [A - lambda I] * [x1; x2] = [0;0]
[6, 3 ; -4, -2] * [x1; x2] = [0,0]
6x1 + 3x2 = 0
-4x1 - 2x2 = 0
-----
[6,3; -4, 2]
divide by 6 -> [1, ½; -4, -2]
R2 + 4R1 -> [1, ½; 0,0] -> [1, ½; 0,0] * [x1; x2] = [0;0]
x1 + ½ x2 = 0
x1 = -1/2x2
-2x1 = x2
x = [1, -2]
---
det [5-lambda, 3; -4, -3-lambda] -> [5-3, 3; -4, -3-3] = [2, 3; -4, -6]
use A - lambda I * [x1; x2] = [0;0]
[2, 3; -4, -6] * [x1; x2] = [0;0]
[2, 3; -4, -6]
divide by 2 -> [1, 3/2; -4, -6]
R2 + 4R1 -> [1, 3/2; 0;0] -> [1, 3/2; 0;0] * [x1; x2] = [0;0]
x1 + 3/2x2 = 0
x1 = -3/2x2
x2 = 2, x1 = -3
----
(lambda1, lambda2) = 3(3, x2 vector) , x2vector = [-3, 2]
y2(t) = e^3t * [-3;2] = [-3e^3t; 2e^3t]
----
y(t) = C1y1(t) + C2y2(t)
= [e^-t, -3e^3t; -2e^-t, 2e^3t] * [C1; C2]
plug in initial value(1)
W(t) = ((e^-t * 2e^3t) - ((-2e^-t * -3et))
= (2e^2t) - (6e^3t) -> (2e^2(1)) - (6e^2(1))
= 2e^2 - 6e^2
= -4e^2 -> det.
W(t) does not equal zero
---
plug in initial value (1)
= [e^-1, -3e^3; -2e^-1, 2e^3] * [C1; C2] = [2;0]
[C1; C2] = [e^-1, -3e^3; -2e^-1, 2e^3]^-1 * [2;0]
= 1-4e^2 [2e^3, 3e^3; 2e^-1, e^-1] * [0;2]
=[-e/2, -3e/4; -1/2e^3, -1/4e^-3] * [2;0]
=[-e+0; -e^-3 + 0] = [-e;-e^-3] = [C1; C2]
---
y(t) = C1y1(t) + C2y2(t)
y(t) = e^-1 [e^-t; -2e^-t] - e^-3 [ -3e^3t; 2e^3t]
[e^t-1; 2e^-t+1] + {3e^3t-3; -2e^3t-3]
= [-e^t-1 + 3e^3t-3; 2e^-t+1 - 2e^3t-3] -> y(t)
Confidence rating: 2,3
.............................................
Given Solution:
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Self-critique (if necessary): OK
Self-critique rating: OK
#$&*
course MTH-279
08/03, around 11:50PM
Query 26 Differential Equations*********************************************
Question: Find the solutions to y ' = A y when
A = [ 5, 3; -4, -3 ]
and
y(1) = [2; 0].
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
p(lambda) = det[A-lambda I]
lambda = [5, 3; -4, -3] = [lambda, 0; 0, lambda]
A - lambda I = [5, 3; -4, -3] - [lambda, 0; 0, lambda] = [5-y, 3-0; -4-0, -3-lambda] = [5-y, 3; -4, -3-lambda]
det[A - lambda I] = det[5-y, 3; -4, -3-lambda]
= [(5-lambda) * (-3-lambda)] - [(-4 * 3)]
=[-15 - 5lambda + 3lambda + lambda^2] + 12
-15 - 2lambda + lambda^2 + 12 -> -3 -2lambda + lambda^2
lambda^2 - 2 lambda - 3
(lambda + 1)(lambda - 3)
lambda = -1, 3
= det[5-lambda, 3; -4, -3-lambda] -> [5+1, 3; -4, -3+1] = [6, 3; -4, -2]
use [A - lambda I] * [x1; x2] = [0;0]
[6, 3 ; -4, -2] * [x1; x2] = [0,0]
6x1 + 3x2 = 0
-4x1 - 2x2 = 0
-----
[6,3; -4, 2]
divide by 6 -> [1, ½; -4, -2]
R2 + 4R1 -> [1, ½; 0,0] -> [1, ½; 0,0] * [x1; x2] = [0;0]
x1 + ½ x2 = 0
x1 = -1/2x2
-2x1 = x2
x = [1, -2]
---
det [5-lambda, 3; -4, -3-lambda] -> [5-3, 3; -4, -3-3] = [2, 3; -4, -6]
use A - lambda I * [x1; x2] = [0;0]
[2, 3; -4, -6] * [x1; x2] = [0;0]
[2, 3; -4, -6]
divide by 2 -> [1, 3/2; -4, -6]
R2 + 4R1 -> [1, 3/2; 0;0] -> [1, 3/2; 0;0] * [x1; x2] = [0;0]
x1 + 3/2x2 = 0
x1 = -3/2x2
x2 = 2, x1 = -3
----
(lambda1, lambda2) = 3(3, x2 vector) , x2vector = [-3, 2]
y2(t) = e^3t * [-3;2] = [-3e^3t; 2e^3t]
----
y(t) = C1y1(t) + C2y2(t)
= [e^-t, -3e^3t; -2e^-t, 2e^3t] * [C1; C2]
plug in initial value(1)
W(t) = ((e^-t * 2e^3t) - ((-2e^-t * -3et))
= (2e^2t) - (6e^3t) -> (2e^2(1)) - (6e^2(1))
= 2e^2 - 6e^2
= -4e^2 -> det.
W(t) does not equal zero
---
plug in initial value (1)
= [e^-1, -3e^3; -2e^-1, 2e^3] * [C1; C2] = [2;0]
[C1; C2] = [e^-1, -3e^3; -2e^-1, 2e^3]^-1 * [2;0]
= 1-4e^2 [2e^3, 3e^3; 2e^-1, e^-1] * [0;2]
=[-e/2, -3e/4; -1/2e^3, -1/4e^-3] * [2;0]
=[-e+0; -e^-3 + 0] = [-e;-e^-3] = [C1; C2]
---
y(t) = C1y1(t) + C2y2(t)
y(t) = e^-1 [e^-t; -2e^-t] - e^-3 [ -3e^3t; 2e^3t]
[e^t-1; 2e^-t+1] + {3e^3t-3; -2e^3t-3]
= [-e^t-1 + 3e^3t-3; 2e^-t+1 - 2e^3t-3] -> y(t)
Confidence rating: 2,3
.............................................
Given Solution:
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Self-critique (if necessary): OK
Self-critique rating: OK
#*&!
#$&*
course MTH-279
08/03, around 11:50PM
Query 26 Differential Equations*********************************************
Question: Find the solutions to y ' = A y when
A = [ 5, 3; -4, -3 ]
and
y(1) = [2; 0].
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
p(lambda) = det[A-lambda I]
lambda = [5, 3; -4, -3] = [lambda, 0; 0, lambda]
A - lambda I = [5, 3; -4, -3] - [lambda, 0; 0, lambda] = [5-y, 3-0; -4-0, -3-lambda] = [5-y, 3; -4, -3-lambda]
det[A - lambda I] = det[5-y, 3; -4, -3-lambda]
= [(5-lambda) * (-3-lambda)] - [(-4 * 3)]
=[-15 - 5lambda + 3lambda + lambda^2] + 12
-15 - 2lambda + lambda^2 + 12 -> -3 -2lambda + lambda^2
lambda^2 - 2 lambda - 3
(lambda + 1)(lambda - 3)
lambda = -1, 3
= det[5-lambda, 3; -4, -3-lambda] -> [5+1, 3; -4, -3+1] = [6, 3; -4, -2]
use [A - lambda I] * [x1; x2] = [0;0]
[6, 3 ; -4, -2] * [x1; x2] = [0,0]
6x1 + 3x2 = 0
-4x1 - 2x2 = 0
-----
[6,3; -4, 2]
divide by 6 -> [1, ½; -4, -2]
R2 + 4R1 -> [1, ½; 0,0] -> [1, ½; 0,0] * [x1; x2] = [0;0]
x1 + ½ x2 = 0
x1 = -1/2x2
-2x1 = x2
x = [1, -2]
---
det [5-lambda, 3; -4, -3-lambda] -> [5-3, 3; -4, -3-3] = [2, 3; -4, -6]
use A - lambda I * [x1; x2] = [0;0]
[2, 3; -4, -6] * [x1; x2] = [0;0]
[2, 3; -4, -6]
divide by 2 -> [1, 3/2; -4, -6]
R2 + 4R1 -> [1, 3/2; 0;0] -> [1, 3/2; 0;0] * [x1; x2] = [0;0]
x1 + 3/2x2 = 0
x1 = -3/2x2
x2 = 2, x1 = -3
----
(lambda1, lambda2) = 3(3, x2 vector) , x2vector = [-3, 2]
y2(t) = e^3t * [-3;2] = [-3e^3t; 2e^3t]
----
y(t) = C1y1(t) + C2y2(t)
= [e^-t, -3e^3t; -2e^-t, 2e^3t] * [C1; C2]
plug in initial value(1)
W(t) = ((e^-t * 2e^3t) - ((-2e^-t * -3et))
= (2e^2t) - (6e^3t) -> (2e^2(1)) - (6e^2(1))
= 2e^2 - 6e^2
= -4e^2 -> det.
W(t) does not equal zero
---
plug in initial value (1)
= [e^-1, -3e^3; -2e^-1, 2e^3] * [C1; C2] = [2;0]
[C1; C2] = [e^-1, -3e^3; -2e^-1, 2e^3]^-1 * [2;0]
= 1-4e^2 [2e^3, 3e^3; 2e^-1, e^-1] * [0;2]
=[-e/2, -3e/4; -1/2e^3, -1/4e^-3] * [2;0]
=[-e+0; -e^-3 + 0] = [-e;-e^-3] = [C1; C2]
---
y(t) = C1y1(t) + C2y2(t)
y(t) = e^-1 [e^-t; -2e^-t] - e^-3 [ -3e^3t; 2e^3t]
[e^t-1; 2e^-t+1] + {3e^3t-3; -2e^3t-3]
= [-e^t-1 + 3e^3t-3; 2e^-t+1 - 2e^3t-3] -> y(t)
Confidence rating: 2,3
.............................................
Given Solution:
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Self-critique (if necessary): OK
Self-critique rating: OK
#*&!#*&!
Your work looks good. Let me know if you have any questions.