Query_28

#$&*

course MTH-279

08/06 around 4:10 PM

Query 28 Differential Equations*********************************************

Question: Diagonalize the matrix [2, 3; 2, 3].

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

just completed one problem here:

T^-1 AT = D

p(lambda) = det [ A-lambda I] = 0

---

det [2-lambda , 3; 2, 3 - lambda]

= (6- 2 lambda - 3lambda + lambda^2) - 6

= lambda^2 - 5lambda = 0

lambda(lambda - 5) = 0

lambda 1 = 0, lambda 2 = 5

---

use A - lambda I * x1vector = 0

---

we find x1 = -3 and x2 = 2, so x1vector = [-3;2]

---

repeat for lambda 2

--

we find x1 = 1 and x2 = 1, so x2vector = [1;1]

--

T = [-3, 1 ; 2, 1]

(-3 * 1) - (2 * 1) = -5

--

T^-1 = -1/5 [ 1, -1; -2, -3]

 [-1/5, 1/5; 2/5, 3/5]

---

T^-1 AT = D

[-1/5, 1/5 ; 2/5, 3/5] * [2, 3 ; 2, 3] * [-3, 1; 2, 1] = D

---

simplify this into

[0, 0; 2, 3] * [-3, 1; 2, 1]

=[0, 0; 0, 5] = D

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Query_28

#$&*

course MTH-279

08/06 around 4:10 PM

Query 28 Differential Equations*********************************************

Question: Diagonalize the matrix [2, 3; 2, 3].

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

just completed one problem here:

T^-1 AT = D

p(lambda) = det [ A-lambda I] = 0

---

det [2-lambda , 3; 2, 3 - lambda]

= (6- 2 lambda - 3lambda + lambda^2) - 6

= lambda^2 - 5lambda = 0

lambda(lambda - 5) = 0

lambda 1 = 0, lambda 2 = 5

---

use A - lambda I * x1vector = 0

---

we find x1 = -3 and x2 = 2, so x1vector = [-3;2]

---

repeat for lambda 2

--

we find x1 = 1 and x2 = 1, so x2vector = [1;1]

--

T = [-3, 1 ; 2, 1]

(-3 * 1) - (2 * 1) = -5

--

T^-1 = -1/5 [ 1, -1; -2, -3]

 [-1/5, 1/5; 2/5, 3/5]

---

T^-1 AT = D

[-1/5, 1/5 ; 2/5, 3/5] * [2, 3 ; 2, 3] * [-3, 1; 2, 1] = D

---

simplify this into

[0, 0; 2, 3] * [-3, 1; 2, 1]

=[0, 0; 0, 5] = D

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

Query_28

#$&*

course MTH-279

08/06 around 4:10 PM

Query 28 Differential Equations*********************************************

Question: Diagonalize the matrix [2, 3; 2, 3].

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

just completed one problem here:

T^-1 AT = D

p(lambda) = det [ A-lambda I] = 0

---

det [2-lambda , 3; 2, 3 - lambda]

= (6- 2 lambda - 3lambda + lambda^2) - 6

= lambda^2 - 5lambda = 0

lambda(lambda - 5) = 0

lambda 1 = 0, lambda 2 = 5

---

use A - lambda I * x1vector = 0

---

we find x1 = -3 and x2 = 2, so x1vector = [-3;2]

---

repeat for lambda 2

--

we find x1 = 1 and x2 = 1, so x2vector = [1;1]

--

T = [-3, 1 ; 2, 1]

(-3 * 1) - (2 * 1) = -5

--

T^-1 = -1/5 [ 1, -1; -2, -3]

 [-1/5, 1/5; 2/5, 3/5]

---

T^-1 AT = D

[-1/5, 1/5 ; 2/5, 3/5] * [2, 3 ; 2, 3] * [-3, 1; 2, 1] = D

---

simplify this into

[0, 0; 2, 3] * [-3, 1; 2, 1]

=[0, 0; 0, 5] = D

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

"