#$&* course Phy 121 8/23 around 6:00 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: `aThe graph goes through the x axis when y = 0 and through the y axis when x = 0. The x-intercept is therefore when 0 = 3x - 4, so 4 = 3x and x = 4/3. The y-intercept is when y = 3 * 0 - 4 = -4. Thus the x intercept is at (4/3, 0) and the y intercept is at (0, -4). Your graph should confirm this. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q002. Does the steepness of the graph in the preceding exercise (of the function y = 3x - 4) change? If so describe how it changes. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The steepness does not change. It keeps going up at the same rate all along the line. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe graph forms a straight line with no change in steepness. STUDENT COMMENT Ok, I may not understand what exactly it meant by steepness, I was thinking since it was increasing it would also be getting steeper????? INSTRUCTOR RESPONSE A graph can increase while getting steeper and steeper; or it can increase while getting less and less steep. Or it can increase with no change in steepness. Analogies: When you walk up a hill, typically as you approach the top the slope starts to level off--it gets less steep. When you go up a ramp the steepness stays the same until you get to the end of the ramp. When you start climbing a hill, typically it gets steeper for awhile, the stays at about a constant slope, then gets less steep toward the top. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique rating #$&* ********************************************* Question: `q003. What is the slope of the graph of the preceding two exercises (the function is y = 3x - 4;slope is rise / run between two points of the graph)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The rise / run from point to point is 3. If x = 3, Y= 3 * 2 - 4 = 2 If x = 9 Y= 3*6- 4 = 14 If we take 14 – 2 = 12 and then take the run of 12 / 4 because that is the numbers in between 2 and 6 to get a slope of 3. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aBetween any two points of the graph rise / run = 3. For example, when x = 2 we have y = 3 * 2 - 4 = 2 and when x = 8 we have y = 3 * 8 - 4 = 20. Between these points the rise is 20 - 2 = 18 and the run is 8 - 2 = 6 so the slope is rise / run = 18 / 6 = 3. Note that 3 is the coefficient of x in y = 3x - 4. Note the following for reference in subsequent problems: The graph of this function is a straight line. The graph increases as we move from left to right. We therefore say that the graph is increasing, and that it is increasing at constant rate because the steepness of a straight line doesn't change. EXPANDED EXPLANATION Any student who has completed Algebra I and Algebra II should be familiar with slope calculations. Most students are. However a number of students appear to be very fuzzy on the concept, and I suspect that not all prerequisite courses cover this concept adequately (though I am confident that it's done well at VHCC). Also a number of students haven't taken a math course in awhile, and might simply be a bit rusty with this idea. In any case the following expanded explanation might be helpful to some students: Slope = rise / run. The rise between two graph points is the change in the y coordinate. The run is the change in the x coordinate. Our function is y = 3 x - 4. When x = 2, we substitute 2 for x to get y = 3 * 2 - 4, which is equal to 2. When x = 8, we substitute 8 for x to get y = 3 * 8 - 4, which is equal to 20. The graph therefore contains the points (2, 2) and (8, 20). You should have made a graph showing these points. If not you should do so now. As you go from point to point your y coordinate goes from 2 to 20. So the 'rise' between the points is 20 - 2 = 18. Your x coordinate goes from 2 to 8. So the 'run' between the points is 8 - 2 = 6. The slope is rise / run = 18 / 6 = 3. The numbers 2 and 8, which were used for the x values, were chosen arbitrarily. Any other two x values would have given you different coordinates, likely with different rise and run. However whatever two x values you use, you will get the same slope. The slope of this graph is constant, and is equal to 3. STUDENT QUESTION Am I not allowed to utilize my calculus tools, yet? Couldn't I have just taken the derivative for the function, y = 3x -4 to obtain 3 as the slope? However, I do know how to do both ways. Which is the more preferred method? INSTRUCTOR RESPONSE This exercise develops a language for describing some aspects of graphs, and does not assume calculus tools. Of course it's fine to use the calculus tools if you have them, as long as you understand the problem at the more basic level as well. Unfortunately, not every student who has had a calculus course would know how to apply those tools to this situation (for example, I've had students from other institutions who have made A's in Applied Calculus courses from other (not particularly reputable) institutions, who didn't understand the concept of a slope). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q004. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: X Y 0 0 1 1 2 4 3 9 The graph is increasing from left to right. The steepness does change between the y points by 1, 3, and 5. It is increasing at an increasing rate because the line increases as well as the steppness increases. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aGraph points include (0,0), (1,1), (2,4) and (3,9). The y values are 0, 1, 4 and 9, which increase as we move from left to right. The increases between these points are 1, 3 and 5, so the graph not only increases, it increases at an increasing rate STUDENT QUESTION: I understand increasing...im just not sure at what rate...how do you determine increasing at an increasing rate or a constant rate? INSTRUCTOR RESPONSE: Does the y value increase by the same amount, by a greater amount or by a lesser amount every time x increases by 1? In this case the increases get greater and greater. So the graph increases, and at an increasing rate. *&*&. STUDENT QUESTION: I am a little hazy on what the steepness is INSTRUCTOR RESPONSE: The hill analogy I used above might be helpful. Formally, steepness could be defined as the magnitude of the slope, i.e., the absolute value of the slope. Two graphs with respective slopes 4 and -4 would be equally steep; both would have slope of magnitude 4. Both of these graphs would be steeper than, say a graph with slope 3 or -3. NOTE FOR STUDENT WITH CALCULUS BACKGROUND (students who haven't had calculus should ignore this; this explanation is optional even for students who have had calculus) In terms of the calculus, the derivative function is easily seen to be y ' = 2 x, which is positive and increasing, and which therefore implies an increasing slope. Since in this case the slope is positive, which implies that the function is increasing, the increasing slope therefore implies that the value of the function is increasing at an increasing rate. Another terminology which is standard in calculus: If the slope is increasing then the shape of the graph is concave upward. So we could describe this graph as increasing and concave upward. This could also be explained in terms of the second derivative, y '' = 2, which is positive everywhere. The positive second derivative implies that the graph is concave up. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&*3 ********************************************* Question: `q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: X Y -3 9 -2 4 -1 1 0 0 The graph is decreasing from left to right. The steepness does change between the y points by 5, 3, and 1. The graph is decreasing at a decreasing rate because the line is decreasing as well as the steepness. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aFrom left to right the graph is decreasing (points (-3,9), (-2,4), (-1,1), (0,0) show y values 9, 4, 1, 0 as we move from left to right ). The magnitudes of the changes in x from 9 to 4 to 1 to 0 decrease, so the steepness is decreasing. Thus the graph is decreasing, but more and more slowly. We therefore say that the graph on this interval is decreasing at a decreasing rate. NOTE FOR STUDENT WITH CALCULUS BACKGROUND (students who haven't had calculus should ignore this; this explanation is optional even for students who have had calculus) In terms of the calculus, the derivative function is easily seen to be y ' = 2 x, which is positive and increasing, and which therefore implies an increasing slope. Since in this case the slope is negative, which implies that the function is decreasing, the increasing slope therefore implies that the rate of decrease is decreasing. The value of the function is therefore decreasing at a decreasing rate. Another terminology which is standard in calculus: If the slope is increasing then the shape of the graph is concave upward. So we could describe this graph as decreasing and concave upward. This could also be explained in terms of the second derivative, y '' = 2, which is positive everywhere. The positive second derivative implies that the graph is concave up. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q006. Make a table of y vs. x for y = `sqrt(x). [note: `sqrt(x) means 'the square root of x']. Graph y = `sqrt(x) between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: X Y 0 0 1 1 2 1.414 3 1.732 4 2 At first the graph would increase and then begin to decrease because the y values are getting closer together at each x value. So the steepness is decreasing, meaning the graph is increasing at a decreasing rate. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aIf you use x values 0, 1, 2, 3, 4 you will obtain graph points (0,0), (1,1), (2,1.414), (3. 1.732), (4,2). The y value changes by less and less for every succeeding x value. Thus the steepness of the graph is decreasing. The graph would be increasing at a decreasing rate. If the graph represents the profile of a hill, the hill starts out very steep but gets easier and easier to climb. You are still climbing but you go up by less with each step, so the rate of increase is decreasing. If your graph doesn't look like this then you probably are not using a consistent scale for at least one of the axes. If your graph isn't as described take another look at your plot and make a note in your response indicating any difficulties. STUDENT QUESTION: I am still unsure why the steepness is decreasing, I see why going from right to left, but the graph looks linear? INSTRUCTOR RESPONSE: The y value increases, but it changes by less and less for every succeeding x value. So the graph is increasing, but by less and less with each step. It's increasing but at a decreasing rate. The graph does not look linear. If it does, then it's probably because your x and/or y axis is not scaled in equal increments. NOTE FOR CALCULUS-PREPARED STUDENTS (students who haven't had calculus should ignore this; this explanation is optional even for students who have had calculus) In terms of the calculus, the derivative function is easily seen to be y ' = 1 / (2 sqrt(x)), which is positive but decreasing, and which therefore implies a decreasing slope. Since in this case the slope is positive, which implies that the function is increasing, the decreasing slope therefore implies that the rate of increase is decreasing. The value of the function is therefore increasing at a decreasing rate. Another terminology which is standard in calculus: If the slope is increasing then the shape of the graph is concave upward. So we could describe this graph as increasing and concave downward. This could also be explained in terms of the second derivative, y '' = -1 / (4 x^(3/2)), which is negative on this interval. The negative second derivative implies that the graph is concave down. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q007. Make a table of y vs. x for y = 5 * 2^(-x). Graph y = 5 * 2^(-x) between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: X Y 0 5 1 2.5 2 1.25 3 .625 The graph is decreasing and the steepness decreases less and less each time. It is decreasing at a decreasing rate because the line and steepness are decreasing. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** From basic algebra recall that a^(-b) = 1 / (a^b). So, for example: 2^-2 = 1 / (2^2) = 1/4, so 5 * 2^-2 = 5 * 1/4 = 5/4. 5* 2^-3 = 5 * (1 / 2^3) = 5 * 1/8 = 5/8. Etc. The decimal equivalents of the values for x = 0 to x = 3 will be 5, 2.5, 1.25, .625. These values decrease, but by less and less each time. The graph is therefore decreasing at a decreasing rate. ** STUDENT QUESTION I don’t understand how the graph decreases at a decreasing rate because it decreases by half every time. The ˝ is constant. INSTRUCTOR RESPONSE The values decrease by a factor of 1/2 every time. That means each number would be multiplied by 1/2 to get the next. As a result the numbers we are halving keep decreasing. Half of 5 is 2.5; half of 2.5 is 1.25; half of 1.25 is .625. The decreases from one number to the next are respectively 2.5, 1.25 and .625. If the y values 5, 2.5, 1.25, .625 are placed at equal x intervals, it should be clear that the graph is decreasing at a decreasing rate. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q008. Suppose you stand still in front of a driveway. A car starts out next to you and moves away from you, traveling faster and faster. If y represents the distance from you to the car and t represents the time in seconds since the car started out, would a graph of y vs. t be increasing or decreasing? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The graph would increase because the further the car goes the faster it will go. It would be a increasing at an increasing rate because the speed goes up with every second on the clock. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The speed of the car increases so it goes further each second. On a graph of distance vs. clock time there would be a greater change in distance with each second, which would cause a greater slope with each subsequent second. The graph would therefore be increasing at an increasing rate. ** STUDENT COMMENT I don’t fully understand a distance vs. time graph. INSTRUCTOR RESPONSE If y represents the distance from you to the car and t represents the time in seconds since the car started out, then the graph of y vs. t is a graph of distance vs. clock time. The car is speeding up, so in any series of equal time intervals it moves further with each new interval. The distance it moves on an interval is represented by the difference between the y coordinates, so if it move further during an interval the 'rise' of the graph on that interval will be greater. If the intervals are equally spaced along the t axis, the result is an increasing graph with increasing slope. This is best understood by sketching the graph according to this description. STUDENT QUESTION I understand the clock time but could you give me some examples of numbers to sketch a graph. I am drawing a blank to how to make myself understand.????? INSTRUCTOR RESPONSE If the car's velocity for the first second averages 1 ft / sec, then in subsequent second 3 ft / sec, then 5 ft / sec, then 7 ft / sec, it will move 1 foot during the first second, 3 feet during the next, 5 feet during the next and 7 feet during the next. A graph of velocity vs. clock time would be a straight line, since the velocity increases by the same amount every second. However the positions of the car, as measured from the starting point, would be position 1 foot after 1 second position 4 feet after 2 seconds (the position changes by 3 feet, started this second at 1 ft, so the car ends up with position 4 feet) position 9 feet after 3 seconds (the position changes by 5 feet, started this second at 4 ft, so the car ends up with position 9 feet) position 16 feet after 4 seconds (the position changes by 7 feet, started this second at 9 ft, so the car ends up with position 16 feet) So the graph of position vs. clock time has positions 0, 1, 4, 9 and 16 feet after 0, 1, 2, 3 and 4 seconds, respectively. The position vs. clock time graph is therefore increasing at an increasing rate. Let me know if this doesn't answer your question. STUDENT QUESTION I still don’t totally understand why it would necessarily be increasing at an increasing rate. Couldn’t it be a decreasing or even a standard rate as I mentioned above? INSTRUCTOR RESPONSE If the car speeds up then its distance from its starting position increases at an increasing rate. Its speed might be increasing at an increasing, constant or decreasing rate, but not its position. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 "
#$&* course Phy 121 8/23 around 7:00 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: `aA 4 m by 3 m rectangle can be divided into 3 rows of 4 squares, each 1 meter on a side. This makes 3 * 4 = 12 such squares. Each 1 meter square has an area of 1 square meter, or 1 m^2. The total area of the rectangle is therefore 12 square meters, or 12 m^2. The formula for the area of a rectangle is A = L * W, where L is the length and W the width of the rectangle. Applying this formula to the present problem we obtain area A = L * W = 4 m * 3 m = (4 * 3) ( m * m ) = 12 m^2. Note the use of the unit m, standing for meters, in the entire calculation. Note that m * m = m^2. FREQUENT STUDENT ERRORS The following are the most common erroneous responses to this question: 4 * 3 = 12 4 * 3 = 12 meters INSTRUCTOR EXPLANATION OF ERRORS Both of these solutions do indicate that we multiply 4 by 3, as is appropriate. However consider the following: 4 * 3 = 12. 4 * 3 does not equal 12 meters. 4 * 3 meters would equal 12 meters, as would 4 meters * 3. However the correct result is 4 meters * 3 meters, which is not 12 meters but 12 meters^2, as shown in the given solution. To get the area you multiply the quantities 4 meters and 3 meters, not the numbers 4 and 3. And the result is 12 meters^2, not 12 meters, and not just the number 12. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q002. What is the area of a right triangle whose legs are 4.0 meters and 3.0 meters? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = 1/2 * b * h A = 1/2 * 4 meters * 3 meters A = ˝ * 12 m^2 A = 6 m^2 confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aA right triangle can be joined along its hypotenuse with another identical right triangle to form a rectangle. In this case the rectangle would have dimensions 4.0 meters by 3.0 meters, and would be divided by any diagonal into two identical right triangles with legs of 4.0 meters and 3.0 meters. The rectangle will have area A = L * W = 4.0 m * 3.0 m = 12 m^2, as explained in the preceding problem. Each of the two right triangles, since they are identical, will therefore have half this area, or 1/2 * 12 m^2 = 6.0 m^2. The formula for the area of a right triangle with base b and altitude h is A = 1/2 * b * h. STUDENT QUESTION Looking at your solution I think I am a bit rusty on finding the area of triangles. Could you give me a little more details on how you got your answer? INSTRUCTOR RESPONSE As explained, a right triangle is half of a rectangle. There are two ways to put two right triangles together, joining them along the hypotenuse. One of these ways gives you a rectangle. The common hypotenuse thus forms a diagonal line across the rectangle. The area of either triangle is half the area of this rectangle. If this isn't clear, take a blade or a pair of scissors and cut a rectangle out of a piece of paper. Make sure the length of the rectangle is clearly greater than its width. Then cut your rectangle along a diagonal, to form two right triangles. Now join the triangles together along the hypotenuse. They will either form a rectangle or they won't. Either way, flip one of your triangles over and again join them along the hypotenuse. You will have joined the triangles along a common hypotenuse, in two different ways. If you got a rectangle the first time, you won't have one now. And if you have a rectangle now, you didn't have one the first time. It should be clear that the two triangles have equal areas (allowing for a little difference because we can't really cut them with complete accuracy). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I didn’t explain how the hypotenuse would connect it or how it was half of a rectangle and that’s why I multiplied it the same way and then divided by ˝. ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q003. What is the area of a parallelogram whose base is 5.0 meters and whose altitude is 2.0 meters? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = b * h A = 5.0 m * 2.0 m = 10 m^2. confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aA parallelogram is easily rearranged into a rectangle by 'cutting off' the protruding end, turning that portion upside down and joining it to the other end. Hopefully you are familiar with this construction. In any case the resulting rectangle has sides equal to the base and the altitude so its area is A = b * h. The present rectangle has area A = 5.0 m * 2.0 m = 10 m^2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q004. What is the area of a triangle whose base is 5.0 cm and whose altitude is 2.0 cm? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = 1/2 * b * h A = 1/2 * 5.0 cm * 2.0 cm A = 1/2 * 10 cm^2 A= 5.0 cm^2. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aIt is possible to join any triangle with an identical copy of itself to construct a parallelogram whose base and altitude are equal to the base and altitude of the triangle. The area of the parallelogram is A = b * h, so the area of each of the two identical triangles formed by 'cutting' the parallelogram about the approriate diagonal is A = 1/2 * b * h. The area of the present triangle is therefore A = 1/2 * 5.0 cm * 2.0 cm = 1/2 * 10 cm^2 = 5.0 cm^2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q005. What is the area of a trapezoid with a width of 4.0 km and average altitude of 5.0 km? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = base * average altitude A = 4.0 km * 5.0 km A = 20 km^2 confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aAny trapezoid can be reconstructed to form a rectangle whose width is equal to that of the trapezoid and whose altitude is equal to the average of the two altitudes of the trapezoid. The area of the rectangle, and therefore the trapezoid, is therefore A = base * average altitude. In the present case this area is A = 4.0 km * 5.0 km = 20 km^2. STUDENT SOLUTION ILLUSTRATING NEED TO USE UNITS IN ALL STEPS A=Base time average altitude therefore………A=4 *5= 20 km ^2 INSTRUCTOR COMMENT A = (4 km) * (5 km) = 20 km^2. Use the units at every step. km * km = km^2, and this is why the answer comes out in km^2. Try to show the units and how they work out in every step of the solution. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q006. What is the area of a trapezoid whose width is 4 cm in whose altitudes are 3.0 cm and 8.0 cm? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Average altitude is (3 cm + 8 cm) / 2 = 5.5 cm You get the average because A = W * average altitude. A = 4 cm * 5.5 cm A = 22 cm^2 confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe area is equal to the product of the width and the average altitude. Average altitude is (3 cm + 8 cm) / 2 = 5.5 cm so the area of the trapezoid is A = 4 cm * 5.5 cm = 22 cm^2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q007. What is the area of a circle whose radius is 3.00 cm? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = pi * r^2 A = pi * (3 cm)^2 A = 9 pi cm^2 confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe area of a circle is A = pi * r^2, where r is the radius. Thus A = pi * (3 cm)^2 = 9 pi cm^2. Note that the units are cm^2, since the cm unit is part r, which is squared. The expression 9 pi cm^2 is exact. Any decimal equivalent is an approximation. Using the 3-significant-figure approximation pi = 3.14 we find that the approximate area is A = 9 pi cm^2 = 9 * 3.14 cm^2 = 28.26 cm^2, which we round to 28.3 cm^2 to match the number of significant figures in the given radius. Be careful not to confuse the formula A = pi r^2, which gives area in square units, with the formula C = 2 pi r for the circumference. The latter gives a result which is in units of radius, rather than square units. Area is measured in square units; if you get an answer which is not in square units this tips you off to the fact that you've made an error somewhere. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q008. What is the circumference of a circle whose radius is exactly 3 cm? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: C = 2 pi r C = 2 pi * 3 cm C = 6 pi cm. 6 * 3.14 cm = 18.8 cm confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe circumference of this circle is C = 2 pi r = 2 pi * 3 cm = 6 pi cm. This is the exact area. An approximation to 3 significant figures is 6 * 3.14 cm = 18.8 cm. Note that circumference is measured in the same units as radius, in this case cm, and not in cm^2. If your calculation gives you cm^2 then you know you've done something wrong. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q009. What is the area of a circle whose diameter is exactly 12 meters? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = pi r^2 A = pi (6 m)^2 A = 36 pi m^2. A = 36 m^2 * 3.14 A = 113.04m^2 confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe area of a circle is A = pi r^2, where r is the radius. The radius of this circle is half the 12 m diameter, or 6 m. So the area is A = pi ( 6 m )^2 = 36 pi m^2. This result can be approximated to any desired accuracy by using a sufficient number of significant figures in our approximation of pi. For example using the 5-significant-figure approximation pi = 3.1416 we obtain A = 36 m^2 * 3.1416 = 113.09 m^2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q010. What is the area of a circle whose circumference is 14 `pi meters? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: C = 2 pi r r = C / (2 pi) r = 14 pi m / (2 pi) r = (14/2) * (pi/pi) m r = 7 * 1 m r = 7 m. A = pi * (7 m)^2 A = 49 pi m^2. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aWe know that A = pi r^2. We can find the area if we know the radius r. We therefore attempt to use the given information to find r. We know that circumference and radius are related by C = 2 pi r. Solving for r we obtain r = C / (2 pi). In this case we find that r = 14 pi m / (2 pi) = (14/2) * (pi/pi) m = 7 * 1 m = 7 m. We use this to find the area A = pi * (7 m)^2 = 49 pi m^2. STUDENT QUESTION: Is the answer not 153.86 because you have multiply 49 and pi???? INSTRUCTOR RESPONSE 49 pi is exact and easier to connect to radius 7 (i.e., 49 is clearly the square of 7) than the number 153.86 (you can't look at that number and see any connection at all to 7). You can't express the exact result with a decimal. If the radius is considered exact, then only 49 pi is an acceptable solution. If the radius is considered to be approximate to some degree, then it's perfectly valid to express the result in decimal form, to an appropriate number of significant figures. 153.86 is a fairly accurate approximation. However it's not as accurate as it might seem, since you used only 3 significant figures in your approximation of pi (you used 3.14). The first three figures in your answer are therefore significant (though you need to round); the .86 in your answer is pretty much meaningless. If you round the result to 154 then the figures in your answer are significant and meaningful. Note that a more accurate approximation (though still just an approximation) to 49 pi is 153.93804. An approximation to 5 significant figures is 153.94, not 153.86. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q011. What is the radius of circle whose area is 78 square meters? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = pi r^2 A / pi = r^2 r = sqrt( A / pi ) r = sqrt( 78 m^2 / pi) r = sqrt(78 / pi) m. r = 5.0 m confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aKnowing that A = pi r^2 we solve for r. We first divide both sides by pi to obtain A / pi = r^2. We then reverse the sides and take the square root of both sides, obtaining r = sqrt( A / pi ). Note that strictly speaking the solution to r^2 = A / pi is r = +-sqrt( A / pi ), meaning + sqrt( A / pi) or - sqrt(A / pi). However knowing that r and A are both positive quantities, we can reject the negative solution. Now we substitute A = 78 m^2 to obtain r = sqrt( 78 m^2 / pi) = sqrt(78 / pi) m.{} Approximating this quantity to 2 significant figures we obtain r = 5.0 m. STUDENT QUESTION Why after all the squaring and dividing is the final product just meters and not meters squared???? INSTRUCTOR RESPONSE It's just the algebra of the units. sqrt( 78 m^2 / pi) = sqrt(78) * sqrt(m^2) / sqrt(pi). The sqrt(78) / sqrt(pi) comes out about 5. The sqrt(m^2) comes out m. This is a good thing, since radius is measured in meters and not square meters. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q012. Summary Question 1: How do we visualize the area of a rectangle? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: We see a rectangle as being divided into 1 unit squares in rows. We multiply the number of squares in a row by the number of rows. A = L * W confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aWe visualize the rectangle being covered by rows of 1-unit squares. We multiply the number of squares in a row by the number of rows. So the area is A = L * W. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q013. Summary Question 2: How do we visualize the area of a right triangle? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: We see two identical right triangles being joined by a hypotenuse to form a rectangle whose length is equal to the base of the triangle and whose width is equal to the altitude of the triangle. The area of the rectangle is b * h, so the area of each triangle is 1/2 * b * h. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aWe visualize two identical right triangles being joined along their common hypotenuse to form a rectangle whose length is equal to the base of the triangle and whose width is equal to the altitude of the triangle. The area of the rectangle is b * h, so the area of each triangle is 1/2 * b * h. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q014. Summary Question 3: How do we calculate the area of a parallelogram? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Area of a parallelogram = base * altitude confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe area of a parallelogram is equal to the product of its base and its altitude. The altitude is measured perpendicular to the base. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q015. Summary Question 4: How do we calculate the area of a trapezoid? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: We see a trapezoid as the two parallel sides are vertical, and we multiply the average altitude by the width. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aWe think of the trapezoid being oriented so that its two parallel sides are vertical, and we multiply the average altitude by the width. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q016. Summary Question 5: How do we calculate the area of a circle? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: We use the formula A = pi r^2 confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aWe use the formula A = pi r^2, where r is the radius of the circle. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q017. Summary Question 6: How do we calculate the circumference of a circle? How can we easily avoid confusing this formula with that for the area of the circle? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Use the formula C = 2 pi r. The area formula involves r^2 and the circumference is not measured in squared units. confidence rating #$&* 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aWe use the formula C = 2 pi r. The formula for the area involves r^2, which will give us squared units of the radius. Circumference is not measured in squared units. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: `q018. Explain how you have organized your knowledge of the principles illustrated by the exercises in this assignment. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I have wrote the formulas down for each thing and will study them. ------------------------------------------------ Self-critique rating #$&* "