Assignment6OpenQA

course MTH 173

7/5 8p

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

006. goin' the other way

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `qNote that there are 7 questions in this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `q001. If the water and a certain cylinder is changing depth at a rate of -4 cm/sec at the t = 20 second instant, at which instant the depth is 80 cm, then approximately what do you expect the depth will be at the t = 21 second instant?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

approx. 76 cm, since the rate is -4cm/sec and the time interval is one second, subtract 4 from 80. This is an approximation because the rate may be changing..

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aAt a rate of -4 cm/s, for the 1-second interval between t = 20 s and t = 21 s the change in depth would be -4 cm/s * 1 sec = -4 cm. If the depth was 80 cm at t = 20 sec, the depth at t = 21 sec would be 80 cm - 4 cm/ = 76 cm.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating: OK

*********************************************

Question: `q002. Using the same information, what the you expect the depth will be depth at the t = 30 sec instant? Do you think this estimate is more or less accurate than the estimate you made for the t = 21 second instant?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The time interval from 20 to 30 seconds is 10 seconds, the only rate information we have is that the rate is changing at -4cm/s at the 20 second interval, so -4cm/s * 10 seconds = -40cm. The depth at t=20 was 80cm, so at 30 seconds I estimate the depth at 40cm. This is a less accurate estimate than the 21 s estimate as the rate may be changing and the greater the interval, the more it may have changed.

Confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aAt - 4 cm/s, during the 10-second interval between t = 20 sec and t = 30 sec we would expect a depth change of -4 cm/sec * 10 sec = -40 cm, which would result in a t = 30 sec depth of 80 cm - 40 cm = 40 cm.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating: OK

*********************************************

Question: `q003. If you know that the depth in the preceding example is changing at the rate of -3 cm/s at the t = 30 sec instant, how will this change your estimate for the depth at t = 30 seconds--i.e., will your estimate be the same as before, will you estimate a greater change in depth or a lesser change in depth?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A lesser change in depth, since the rate is decreasing.

Confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aSince the rate of depth change has changed from -4 cm / s at t = 20 s to -3 cm / s at t = 30 s, we conclude that the depth probably wouldn't change as much has before.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating: OK

*********************************************

Question: `q004. What is your specific estimate of the depth at t = 30 seconds?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The average or midpoint of the velocity is -3.5cm/s, multiplying this by the 10 second interval gives me an estimate of a 35cm change from depth at t=20 seconds, which was 80, so my estimate for t=30 seconds is 80-35 = 45cm.

Confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aKnowing that at t = 20 sec the rate is -4 cm/s, and at t = 30 sec the rate is -3 cm/s, we could reasonably conjecture that the approximate average rate of change between these to clock times must be about -3.5 cm/s. Over the 10-second interval between t = 20 s and t = 30 s, this would result in a depth change of -3.5 cm/s * 10 sec = -35 cm, and a t = 30 s depth of 80 cm - 35 cm = 45 cm.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating: OK

*********************************************

Question: `q005. If we have a uniform cylinder with a uniformly sized hole from which water is leaking, so that the quadratic model is very nearly a precise model of what actually happens, then the prediction that the depth will change and average rate of -3.5 cm/sec is accurate. This is because the rate at which the water depth changes will in this case be a linear function of clock time, and the average value of a linear function between two clock times must be equal to the average of its values at those to clock times.

If y is the function that tells us the depth of the water as a function of clock time, then we let y ' stand for the function that tells us the rate at which depth changes as a function of clock time.

If the rate at which depth changes is accurately modeled by the linear function y ' = .1 t - 6, with t in sec and y in cm/s, verify that the rates at t = 20 sec and t = 30 sec are indeed -4 cm/s and -3 cm/s.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y ' = .1(20) - 6 = 2 - 6 = -4 cm/s

y ' = .1(30) - 6 = 3 -6 = -3 cm/s

Confidence rating:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aAt t = 20 sec, we evaluate y ' to obtain y ' = .1 ( 20 sec) - 6 = 2 - 6 = -4, representing -4 cm/s.

At t = 30 sec, we evaluate y' to obtain y' = .1 ( 30 sec) - 6 = 3 - 6 = -3, representing -3 cm/s.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating: OK

*********************************************

Question: `q006. For the rate function y ' = .1 t - 6, at what clock time does the rate of depth change first equal zero?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Setting the rate function = 0, we get 0 = .1t -6. Solving this for t gives .1t = 6, giving t = 60.

Confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe rate of depth change is first equal to zero when y ' = .1 t - 6 = 0. This equation is easily solved to see that t = 60 sec.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating: OK

*********************************************

Question: `q007. How much depth change is there between t = 20 sec and the time at which depth stops changing?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The depth at 20 seconds was 80cm, the depth stops changing at 60 seconds, the rate at 20 seconds was -4cm/s and at 60s was 0 cm/s, which is an avg rate of -2cm/s * 40 second interval, which is -80cm.

Confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe rate of depth change at t = 20 sec is - 4 cm/s; at t = 60 sec the rate is 0 cm/s. The average rate at which depth changes during this 40-second interval is therefore the average of -4 cm/s and 0 cm/s, or -2 cm/s.

At an average rate of -2 cm/s for 40 s, the depth change will be -80 cm. Starting at 80 cm when t = 20 sec, we see that the depth at t = 60 is therefore 80 cm - 80 cm = 0.

"

&#Very good responses. Let me know if you have questions. &#