Assignment 9 

course PHY 122

June 18, 3:30 pm

ǐy|~e|泓

assignment #008

008. `query 7

Physics II

06-18-2009

......!!!!!!!!...................................

14:27:54

Query set 5 problems 16-20

explain how we calculate the average force exerted by a particle of mass m moving at speed v which collides at a time interval `dt elastically and at a right angle with a solid wall

......!!!!!!!!...................................

RESPONSE -->

when an elastic collision occurs the particle's velocity once it hits a fixed wall will change from v to - v or dv.

First calculate the change in velocity: 2 x velocity.

Then calculate the mass of the particles.

The total momentum change will be equal to the change in velocity times the total mass of all the particles.

the average force exerted by a particle of mass moving at a speed can then be calculated by momentum change/ time interval.

.................................................

......!!!!!!!!...................................

14:31:53

** The impulse exerted on a particle in a collision is the change in the momentum of that particle during a collision.

The impulse-momentum theorem says that the change in momentum in a collision is equal to the impulse, the average force * the time interval between collisions.

The average force is thus change in momentum / time interval; the time interval is the round-trip distance divided by the velocity, or 2L / v so the average force is -2 m v / ( 2L / v) = m v^2 / L

If there were N such particles the total average force would be N * m v^2 / L

If the directions are random we distribute the force equally over the 3 dimensions of space and for one direction we get get 1/3 the force found above, or 1/3 N * m v^2 / L.

This 3-way distribution of force is related to the fact that for the average velocity vector we have v^2 = vx^2 + vy^2 + vz^2, where v is average magnitude of velocity and vx, vy and vz the x, y and z components of the velocity (more specifically the rms averages--the square root of the average of the squared components). **

......!!!!!!!!...................................

RESPONSE -->

okay. i understand that the directions are random and distributed equally over three dimensions x, y, and z.

.................................................

......!!!!!!!!...................................

14:40:39

Summarize the relationship between the thermal energy that goes into the system during a cycle, the work done by the system during a cycle, and the thermal energy removed or dissipated during the cycle.

......!!!!!!!!...................................

RESPONSE -->

the amount of work done by a system during the cycle is the diference between the thermal energy in and the thermal energy out.

.................................................

......!!!!!!!!...................................

14:41:43

** Work-energy is conserved within an isolated system. So the thermal energy that goes into the system must equal the total of the work done by the system and the thermal energy removed from the system. What goes in must come out, either in the form of work or thermal energy. **

......!!!!!!!!...................................

RESPONSE -->

okay. this describes the concept of efficiency.

.................................................

......!!!!!!!!...................................

14:42:19

If you know the work done by a thermodynamic system during a cycle and the thermal energy removed or dissipated during the cycle, how would you calculate the efficiency of the cycle?

......!!!!!!!!...................................

RESPONSE -->

the efficiency of the cycle would be equal to the work you get divided by the work you put in.

.................................................

......!!!!!!!!...................................

14:43:56

** STUDENT SOLUTION: Efficiency is work done / energy input. Add the amount thermal energy removed to the amount of work done to get the input. Then, divide work by the energy input. **

......!!!!!!!!...................................

RESPONSE -->

okay.

.................................................

......!!!!!!!!...................................

14:48:17

prin phy and gen phy problem 15.2, cylinder with light frictionless piston atm pressure, 1400 kcal added, volume increases slowly from 12.0 m^3 to 18.2 m^3. Find work and chagne in internal energy.

......!!!!!!!!...................................

RESPONSE -->

work is equialent to pressure to change in volume. In our case, we are dealing with atmospheric pressure (1.013 x 10^5 N/m2) times the change in volume of + 6.2 m^3 = 6.2806 x 10^5 Joules

the internal energy is represented by change in U and is equl to Q-W.

I first converted 1400 kcal to joules which is 5857600 Joules or 5.8576 x 10^6 joules.

the change in internal energy is 5.8576 x 10^6 J - .62806 x 10^6 joules = 5.24794 Joules (internal energy)

.................................................

......!!!!!!!!...................................

14:51:35

Work done at constant pressure is P `dV, so the work done in this situation is

`dW = P `dV = 1 atm * (18.2 m^3 - 12 m^3) = (101.3 * 10^3 N/m^2) * (6.2 m^3) = 630 * 10^3 N * m = 6.3 * 10^5 J.

A total of 1400 kcal = 1400 * 4200 J = 5.9 * 10^6 J of thermal energy is added to the system, the change in internal energy is

`dU = `dQ - `dW = 5.9*10^6 J - 6.3 * 10^5 J = 5.9 * 10^6 J - .63 * 10^6 J = 5.3 * 10^6 J.

It is worth thinking about the P vs. V graph of this process. The pressure P remains constant at 101.3 * 10^3 J as the volume changes from 12 m^3 to 18.2 m^3, so the graph will be a straight line segment from the point (12 m^3, 101.3 * 10^3 J) to the point (18.2 m^3, 101.3 * 10^3 J). This line segment is horizontaland the region above the horizontal axis and beneath the segment is a rectangle whose width is 6.2 * 10^3 m^3 and whose altitude is 101.3 * 10^3 N/m^2; its area is therefore the product of its altitude and width, which is 6.3 * 10^5 N m, or 6.3 * 10^5 J, the same as the word we calculated above.

......!!!!!!!!...................................

RESPONSE -->

okay i understand this one.

.................................................

......!!!!!!!!...................................

14:57:37

prin phy and gen phy problem 15.5, 1.0 L at 4.5 atm isothermally expanded until pressure is 1 atm then compressed at const pressure to init volume, final heated to return to original volume. Sketch and label graph.

......!!!!!!!!...................................

RESPONSE -->

volume on the x axis and atm on the y axis.

there will be a point that corresponds to 1 L and 4.5 atm. then as it expands isothermically the line will slope downward and curve until it reaches 1 atm. then pressure remains constant as a line is drawn over to the last point that corresponds to 1 L and 1 atm.

.................................................

......!!!!!!!!...................................

15:00:37

When a confined ideal gas is expanded isothermally its pressure and volume change, while the number of moled and the temperature remain constant. Since PV = n R T, it follows that P V remains constant.

In the initial state P = 4.5 atm and V = 1 liter, so P V = 4.5 atm * 1 liter = 4.5 atm * liter (this could be expressed in standard units since 1 atm = 101.3 kPa = 101.3 * 10^3 N/m^2 and 1 liters = .001 m^3, but it's more convenient to first sketch and label the graph in units of atm and liters). During the isothermal expansion, therefore, since P V remains constant we have

P V = 4.5 atm liters. At a pressure of 1 atm, therefore, the volume will be V = 4.5 atm liter / P = 4.5 atm liter / (1 atm) = 4.5 liters.

The graph follows a curved path from (1 liter, 4.5 atm) to (4.5 liters, 1 atm).

At the gas is compressed at constant pressure back to its initial 1 liter volume, the pressure remains constant so the graph follows a horizontal line from (4.5liters, 1 atm) to (1 liter, 1 atm). Note that this compression is accomplished by cooling the gas, or allowing it to cool.

Finally the gas is heated at constant volume until its pressure returns to 4.5 atm. The constant volume dictates that the graph follow a vertical line from (1 liter, 1 atm) back to (4.5 liters, 1 atm).

The graph could easily be relabeled to usestandard metric units.

1 atm = 101.3 kPa = 101.3 * 10^3 Pa = 101.3 * 10^3 N/m^2, so

4.5 atm = 4.5 * 101.3 * 10^3 Pa = 4.6 * 10^3 Pa = 4.6 * 10^3 N/m^2.

1 liter = .001 m^3 so 4.5 liters = 4.5 m^3.

Since P V = 4.5 atm liters, P = 4.5 atm liters / V. This is of the form P = c / V, with c a constant. For positive values of V, this curve descendsfrom a vertical asymptote with the vertical axis (the V axis) through the point (1, c) then approaches a horizontal asymptote with the horizontal axis. For c = 4.5 atm liters, the curve therefore passes through the point (1 liter, 4.5 atm). As we have seen it also passes through (4.5 liters, 1 atm).

......!!!!!!!!...................................

RESPONSE -->

okay. i understand.

.................................................

......!!!!!!!!...................................

15:00:47

gen phy problem 15.12, a-c curved path `dW = -35 J, `dQ = -63 J; a-b-c `dW = - 48 J

gen phy how much thermal energy goes into the system along path a-b-c and why?

......!!!!!!!!...................................

RESPONSE -->

for a different section.

.................................................

......!!!!!!!!...................................

15:00:54

** I'll need to look at the graph in the text to give a reliably correct answer to this question. However the gist of the argument goes something like this:

`dQ is the energy transferred to the system, `dW the work done by the system along the path. Along the curved path the system does -35 J of work and -63 J of thermal energy is added--meaning that 35 J of work are done on the system and the system loses 63 J of thermal energy.

If a system gains 35 J of energy by having work done on it while losing 63 J of thermal energy, its internal energy goes down by 28 J (losing thermal energy take internal energy from the system, doing work would take energy from the system so doing negative work adds energy to the system). So between a and c along the curved path the system loses 28 J of internal energy.

In terms of the equation, `dU = `dQ - `dW = -63 J -(-35 J) = -28 J.

It follows that at point c, the internal energy of the system is 28 J less than at point a, and this will be the case no matter what path is followed from a to c.

Along the path a-b-c we have -48 J of work done by the system, which means that the system tends to gain 48 J in the process, while as just observed the internal energy goes down by 28 Joules. The system therefore have `dQ = `dU + `dW = -28 J + (-48 J) = -76 J, and 76 J of internal energy must be removed from the system.**

......!!!!!!!!...................................

RESPONSE -->

okay

.................................................

......!!!!!!!!...................................

15:01:02

gen phy How are the work done by the system, the thermal energy added to the system and the change in the internal energy of the system related, and what is this relationship have to do with conservation of energy?

......!!!!!!!!...................................

RESPONSE -->

different section.

.................................................

......!!!!!!!!...................................

15:01:07

** If a system does work it tends to reduce internal energy, so `dW tends to decrease `dU. If thermal energy is added to the system `dQ tends to increase `dU. This leads to the conclusion that `dU = `dQ - `dW. Thus for example if `dW = -48 J and `dU = -28 J, `dQ = `dU + `dW = -28 J + -48 J = -76 J. **

......!!!!!!!!...................................

RESPONSE -->

okay

.................................................

......!!!!!!!!...................................

15:01:15

gen phy How does the halving of pressure caused a halving of the magnitude of the work, and why is the work positive instead of negative as it was in the process a-b-c?

......!!!!!!!!...................................

RESPONSE -->

different section.

.................................................

......!!!!!!!!...................................

15:01:20

** Work is the area under the pressure vs. volume curve. If you have half the pressure between two volumes the graph has half the altitude, which leads to half the area.

The 'width' of a region is final volume - initial volume. If the direction of the process is such that final volume is less than initial volume (i.e., going 'backwards', in the negative x direction) then with 'width' is negative and the area is negative. **

......!!!!!!!!...................................

RESPONSE -->

okay.

.................................................

......!!!!!!!!...................................

15:01:32

query univ phy problem 19.56 (17.40 10th edition) compressed air engine, input pressure 1.6 * 10^6 Pa, output 2.8 * 10^5 Pa, assume adiabatic.

......!!!!!!!!...................................

RESPONSE -->

Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems.

okay

.................................................

......!!!!!!!!...................................

15:01:38

** For an adiabatic process in an ideal gas you know that PV = nRT and PV^`gamma is constant.

You are given P1 and P2, and you want T2 > 273 K to prevent formation of frost.

Assume T2 = P2 V2 / (n R) = 273 K and n R = (P2 V2) / 273 K .

Then T1 = P1 V1 / (n R) = P1 V1 * 273 K / (P2 V2) = (P1 / P2) * (V1 / V2) * 273 K.

Since PV^`gamma = constant it follows that V1 / V2 = (P2 / P1)^(1/`gamma) = (P1 / P2)^(-1/`gamma).

Thus T1 = (P1 / P2) ( P1 / P2)^(-1/`gamma) * 273 K = (P1 / P2)^(1 - 1/`gamma) = (P1 / P2)^(1-1/1.4) * 273 K = (P1 / P2)^.29 * 273 K = 5.6^.29 * 273 K = 443 K, approx. **

......!!!!!!!!...................................

RESPONSE -->

okay

.................................................

......!!!!!!!!...................................

15:01:45

query univ 19.62 (17.46 10th edition) .25 mol oxygen 240 kPa 355 K. Isobaric to double vol, isothermal back, isochoric to original pressure.

......!!!!!!!!...................................

RESPONSE -->

different section.

.................................................

......!!!!!!!!...................................

15:01:50

** .25 mol oxygen at 240 kPa occupies about V = n R T / P = .25 mol * 8.31 J / (mol K) * 355 K / (2.4 * 10^5 N/m^2) = .003 m^3, very approximately.

Doubling volume, `dV = 2 * V - V = V = .003 m^2 and P = 2.4 * 10^5 Pa so P `dv = 700 J, very approximately.

During isothermal compression we have n = const and T = const so P = n R T / V. Compressing to half the volume, since PV = const, gets us to double the pressure, so max pressure is 2 * 240 kPA = 480 kPa.

To get work we integrate P dV. Integral of P dV is calculated from antiderivative n R T ln | V |; integrating between V1 and V2 we have n R T ln | V2 | - n R T ln | V1 | = n R T ln | V2 / V1 |. In this case V2 = V and V1 = 2 V so V2 / V1 = 1/2 and we have `dW = n R T ln(1/2) = .25 mol * 8.31 J/(mol K) * 710 K * (-.7) = -1000 J, approx.

So net work is about 700 J - 1000 J = -300 J **

......!!!!!!!!...................................

RESPONSE -->

okay

.................................................

......!!!!!!!!...................................

15:01:58

univ phy describe your graph of P vs. V

......!!!!!!!!...................................

RESPONSE -->

different section.

.................................................

......!!!!!!!!...................................

15:02:03

** The graph proceeds horizontally to the right from original P and V to doubled V, then to the left along a curve that increases at an incr rate as we move to the left (equation P = 2 P0 V0 / V) until we're just above the starting point, then vertically down to the starting pt. **

......!!!!!!!!...................................

RESPONSE -->

okay.

.................................................

......!!!!!!!!...................................

15:02:11

univ phy What is the temperature during the isothermal compression?

......!!!!!!!!...................................

RESPONSE -->

different section.

.................................................

......!!!!!!!!...................................

15:02:15

** If vol doubles at const pressure then temp doubles to 710 K, from which isothermal compression commences. So the compression is at 710 K. **

......!!!!!!!!...................................

RESPONSE -->

okay

.................................................

......!!!!!!!!...................................

15:02:21

univ phy What is the max pressure?

......!!!!!!!!...................................

RESPONSE -->

different section.

.................................................

......!!!!!!!!...................................

15:02:26

** It starts the isothermal at the original 240 kPa and its volume is halved at const temp. So the pressure doubles to 480 kPa. **

......!!!!!!!!...................................

RESPONSE -->

okay

.................................................

&#I believe you submitted this as part of a previous submission. Let me know if I'm wrong about that; if I'm right, then be sure to avoid this sort of redundancy. &#

䨙볭ŵj{³|}

assignment #008

008. `query 7

Physics II

06-18-2009

כϋ׃K{zс

assignment #009

009. `query 8

Physics II

06-18-2009

......!!!!!!!!...................................

15:34:07

prin phy and gen phy problem 15.19 What is the maximum efficiency of a heat engine operating between temperatures of 380 C and 580 C?

......!!!!!!!!...................................

RESPONSE -->

first convert the high and low temperatures to Kelvin

580 C + 273 = 853 K

380 C 273 = 653 K

To find maximum efficiency set up the equation:

e ideal = 1 - TL/ TH

= 1 - 653K/ 853 K

= 1-.7655 = .2345 or 23 %

.................................................

......!!!!!!!!...................................

15:35:11

The maximum possible efficiency is (T_h - T_c) / T_h, where T_h and T_c are the absolute max and min operating temperatures.

T_h is (580 + 273)K = 853 K and T_c is (380 + 273) K = 653 K, so the maximum theoretical efficiency is

max efficiency = (T_h - T_c) / T_h = (853 K - 653 K) / (853 K) = .23, approx.

This means that the work done by this engine will be not greater than about 23% of the thermal energy that goes into it.

......!!!!!!!!...................................

RESPONSE -->

okay. I understand this.

.................................................

......!!!!!!!!...................................

15:35:29

query gen phy problem 15.26 source 550 C -> Carnot eff. 28%; source temp for Carnot eff. 35%?

......!!!!!!!!...................................

RESPONSE -->

for general physics, not principles of physics.

.................................................

......!!!!!!!!...................................

15:36:23

** Carnot efficiency is eff = (Th - Tc) / Th.

Solving this for Tc we multiply both sides by Th to get

eff * Th = Th - Tc so that

Tc = Th - eff * Th = Th ( 1 - eff).

We note that all temperatures must be absolute so we need to work with the Kelvin scale (adding 273 C to the Celsius temperature to get the Kelvin temperature)

If Th = 550 C = 823 K and efficiency is 30% then we have

Tc =823 K * ( 1 - .28) = 592 K.

Now we want Carnot efficiency to be 35% for this Tc. We solve eff = (Th - Tc) / Th for Th:

Tc we multiply both sides by Th to get

eff * Th = Th - Tc so that

eff * Th - Th = -Tc and

Tc = Th - eff * Th or

Tc = Th ( 1 - eff) and

Th = Tc / (1 - eff).

If Tc = 576 K and eff = .35 we get

Th = 592 K / ( 1 - .35 ) = 592 C / .6 = 912 K, approx.

This is (912 - 273) C = 639 C. **

......!!!!!!!!...................................

RESPONSE -->

okay

.................................................

......!!!!!!!!...................................

15:36:30

univ phy problem 20.44 (18.40 10th edition) ocean thermal energy conversion 6 C to 27 C

At 210 kW, what is the rate of extraction of thermal energy from the warm water and the rate of absorption by the cold water?

......!!!!!!!!...................................

RESPONSE -->

different section.

.................................................

......!!!!!!!!...................................

15:36:38

** work done / thermal energy required = .07 so thermal energy required = work done / .07.

Translating directly to power, thermal energy must be extracted at rate 210 kW / .07 = 30,000 kW. The cold water absorbs what's left after the 210 kW go into work, or 29,790 kW.

Each liter supplies 4186 J for every degree, or about 80 kJ for the 19 deg net temp change. Needing 30,000 kJ/sec this requires about 400 liters / sec, or well over a million liters / hour.

Comment from student: To be honest, I was suprised the efficiency was so low.

Efficiency is low but the energy is cheap and environmental impact in the deep ocean can be negligible so the process can be economical, if a bit ugly. **

......!!!!!!!!...................................

RESPONSE -->

okay

.................................................

xEm_

assignment #

.

Physics II

06-18-2009

cw_Ӏ}Exwؐ

assignment #008

008. `query 7

Physics II

06-18-2009"

&#Your work looks very good. Let me know if you have any questions. &#