#$&* course MTH 279 4/12 4:16 pm Query 21 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Solve the equation y '' + 2 delta y ' + omega_0^2 y = F cos( omega_1 * t), y(0) = 0, y ' (0) = 0. Give an outline of your work. A very similar problem was set up and partially solved in class on 110309, and your text gives the solution but not the steps. Find the limiting function as omega_1 approaches omega_0, and discuss what this means in terms of a real system. Find the limiting function as delta approaches 0, and discuss what this means in terms of a real system. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For simplification: delta = d and omega = w so y'' + 2d y'+ w0^2 = F cos w1*t r = -d ± sqrt w0^2-d^2) y_C = e^(-delta*t)(c1sin( sqrt (w1^2-d^2)*t) + c2 cos( sqrt (w1^2-d^2)*t) y_P= A sin w1*t + B cos w1*t y'= A*w1*cos w1*t - B*w1*sin w1*t y'' = -Aw1^2*sin w1*t - B*w1^2*cos w1*t Sub into eq: (-Aw1^2*sin w1*t - B*w1^2*cos w1*t) + 2d(A*w1*cos w1*t - B*w1*sin w1*t) +w0^2(A sin w1*t + B cos w1*t) Simplify: A(w0^2-w1^2) -B(2d*w1)= 0 B= A((w0^2-w1^2)/(2d*w1)) B(w0^2-w1^2) + A((2d*w1)) = F Sub in for B: A((w0^2-w1^2)/(2d*w1))*(w0^2-w1^2)+ A((2d*w1))= F A = (F*(2d*w1))/((w0^2-w1^2)^2+(2d*w1)^2) B= (F*(2d*w1))/((w0^2-w1^2)^2+(2d*w1)^2) * ((w0^2-w1^2)/(2d*w1)) B= (F(w0^2-w1^2))/((w0^2-w1^2)^2+(2d*w1)^2) y_P= (F*(2d*w1))/((w0^2-w1^2)^2+(2d*w1)^2) * sin w1*t + (F(w0^2-w1^2))/((w0^2-w1^2)^2+(2d*w1)^2) * cos w1*t y = e^(-delta*t)(c1 cos( sqrt (w1^2-d^2)*t) + c2 sin( sqrt (w1^2-d^2)*t) + (F*(2d*w1))/((w0^2-w1^2)^2+(2d*w1)^2) * sin w1*t + (F(w0^2-w1^2))/((w0^2-w1^2)^2+(2d*w1)^2) * cos w1*t y(0)= 0 --> c2= -(F(w0^2-w1^2))/((w0^2-w1^2)^2+(2d*w1)^2) y'(0)= 0 --> c1 = -(F*(2d*w1^2))/(((w0^2-w1^2)^2+(2d*w1)^2)* sqrt (w1^2-d^2)) y = (Fe^-dt)/((w0^2-w1^2)^2+(2d*w1)^2) * [-((2d*w1^2)/ sqrt (w1^2-d^2))* sin sqrt (w1^2-d^2)*t) - (w0^2-w1^2)*cos( sqrt (w1^2-d^2)*t)] + F/((w0^2-w1^2)^2+(2d*w1)^2) * [(2d*w1) sinw1*t + (w0^2-w1^2)cos w1*t] This differs from the book by only the denominator of c1 where it has d(w0^2+w1^2) where I ended up with d*2w1^2. w0= natural frequency of the system and w1 the frequency of the 'driver' and as the driver approaches w0 resonance occurs and A becomes indirectly proportional to delta. Also, the cosines drop out and that leaves only the sine for the undamped oscillation and then the e term is what diminishes that oscillation. As delta --> 0 the 'resistance' drops out and the system's frequency becomes the same as the driving frequency and it is the sines and e that 'drop out'. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I don't know how I messed that c1 term up but as w1--> w0 the book's c1 denominator approaches mine. ------------------------------------------------ Self-critique rating: ********************************************* Question: An LC circuit with L = 1 Henry and C = 4 microFarads is driven by voltage V_S(t) = 10 t e^(-t). Write and solve the differential equation for the system. Interpret your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Q'' + 250,000Q = 10t*e^-t Q_C = A sin 500t + B cos 500t Q_P= Ate^-t + Be^-t Q'= -Ate^-t + Ae^-t -Be^-t Q''= Ate^-t -Ae^-t - A e^-t +Be^-t (Ate^-t -2Ae^-t + Be^-t)+ 250,000(Ate^-t + Be^-t) = 10te^-t A+250,000A = 10 A = 10/250,001 -2A + B + 250,000 B = 0 B = 20/(250,001)^2 Q= A sin 500t + B cos 500t + 10/250,000t*e^-t + 20/(250,001)^2 e^-t There's no R here and Q doesn't fall off because of it since those 2 diminishing e terms are 'enhanced' by those very small coefficients to go to 0 very quickly and that's because the capacitance is very small compared to the inductance. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"