#$&* course MTH 173 001. `query1
.............................................
Given Solution: ** Continue to the next question ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qAccording to your graph what would be the temperatures at clock times 7, 19 and 31? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = -.00634 t^2 + .411 t + 18 T = 7 y = -.00634 (49) + .411 (7) + 18 y = -.31066 + 2.877 + 18 y = 21 T = 19 y = -.00634 (361) + .411 (19) + 18 y = -2.28874 + 7.809 + 18 y = 24 T = 31 y = -.00634 (961) + .411 (31) + 18 y = -6.09274 + 12.741 + 18 y = 25
.............................................
Given Solution: ** Continue to the next question ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat three points did you use as a basis for your quadratic model (express as ordered pairs)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (95 , 0) , (60 , 20) , (41 , 40) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** A good choice of points `spreads' the points out rather than using three adjacent points. For example choosing the t = 10, 20, 30 points would not be a good idea here since the resulting model will fit those points perfectly but by the time we get to t = 60 the fit will probably not be good. Using for example t = 10, 30 and 60 would spread the three points out more and the solution would be more likely to fit the data. The solution to this problem by a former student will be outlined in the remaining nswers'. STUDENT SOLUTION (this student probably used a version different from the one you used; this solution is given here for comparison of the steps, you should not expect that the numbers given here will be the same as the numbers you obtained when you solved the problem.) For my quadratic model, I used the three points (10, 75) (20, 60) (60, 30). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the first equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (95 , 0) 0 = 9025a + 95b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The equation that I got from the first data point (10,75) was 100a + 10b +c = 75.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the second equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (60 , 20) 20 = 3600a + 60b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The equation that I got from my second data point was 400a + 20b + c = 60 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the third equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (41 , 40) 40 = 1681a + 41b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The equation that I got from my third data point was 3600a + 60b + c = 30. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat multiple of which equation did you first add to what multiple of which other equation to eliminate c, and what is the first equation you got when you eliminated c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I used the multiple -19 and I used it with the equation 20 = -5425a - 35b and I ended up getting -380 = 103075a + 665b. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: First, I subtracted the second equation from the third equation in order to eliminate c. By doing this, I obtained my first new equation 3200a + 40b = -30. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qTo get the second equation what multiple of which equation did you add to what multiple of which other quation, and what is the resulting equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I used the multiple -35 with 20 = 1919a -19b to get the equation -700 = 67165a + 665b. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: This time, I subtracted the first equation from the third equation in order to again eliminate c. I obtained my second new equation: 3500a + 50b = -45** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhich variable did you eliminate from these two equations, and what was the value of the variable for which you solved these equations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I eliminated a first by dividing -1080 by 170240 to get -.00634. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: In order to solve for a and b, I decided to eliminate b because of its smaller value. In order to do this, I multiplied the first new equation by -5 -5 ( 3200a + 40b = -30) and multiplied the second new equation by 4 4 ( 3500a + 50b = -45) making the values of -200 b and 200 b cancel one another out. The resulting equation is -2000 a = -310. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat equation did you get when you substituted this value into one of the 2-variable equations, and what did you get for the other variable? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 20 = -5425 * (-.00634) - 35b 20 = 34.3945 - 35b -14.3945 = -35b b = .411 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: After eliminating b, I solved a to equal .015 a = .015 I then substituted this value into the equation 3200 (.015) + 40b = -30 and solved to find that b = -1.95. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the value of c obtained from substituting into one of the original equations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 0 = 9025 * (-.00634) + 95 * (.411) + c 0 = -18.1735 + c c = 18.1735 or 18 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: By substituting both a and b into the original equations, I found that c = 93 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the resulting quadratic model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 0 = -.00634t^2 + .411t + 18 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Therefore, the quadratic model that I obtained was y = (.015) x^2 - (1.95)x + 93. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat did your quadratic model give you for the first, second and third clock times on your table, and what were your deviations for these clock times? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: T = 0 y = -.00634*(0)^2 + .411*(0) + 18 y = 18 Deviation = 77 T = 10 y = -.00634*(10)^2 + .411*(10) + 18 y = -.634 + 4.11 + 18 y = 21 Deviation = 54 T = 20 y = -.00634*(20)^2 + .411*(20) + 18 y = 24 Deviation = 36 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: This model y = (.015) x^2 - (1.95)x + 93 evaluated for clock times 0, 10 and 20 gave me these numbers: First prediction: 93 Deviation: 2 Then, since I used the next two ordered pairs to make the model, I got back }the exact numbers with no deviation. So. the next two were Fourth prediction: 48 Deviation: 1 Fifth prediction: 39 Deviation: 2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I believe I reversed the values in the points. Reversing the points would severely alter the results of everything that has been done. I believe that I understand the methods but I just made a small that has drastic results. ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat was your average deviation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 77 + 54 + 36 = 167 3 / 167 = .018 My average deviation is .018. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: My average deviation was .6 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qIs there a pattern to your deviations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: There is a pattern where the deviations decrease in a constant manner. confidence rating #$&*:: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: There was no obvious pattern to my deviations. INSTRUCTOR NOTE: Common patterns include deviations that start positive, go negative in the middle then end up positive again at the end, and deviations that do the opposite, going from negative to positive to negative. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qHave you studied the steps in the modeling process as presented in Overview, the Flow Model, Summaries of the Modeling Process, and do you completely understand the process? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Yes. My results would be more accurate if I didn’t reverse the values. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Yes, I do completely understand the process after studying these outlines and explanations. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qHave you memorized the steps of the modeling process, and are you gonna remember them forever? Convince me. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ….What? I have memorized the steps if that is what you are asking. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Yes, sir, I have memorized the steps of the modeling process at this point. I also printed out an outline of the steps in order to refresh my memory often, so that I will remember them forever!!! INSTRUCTOR COMMENT: OK, I'm convinced. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK
.............................................
Given Solution: ** STUDENT SOLUTION: Here are my data which are from the simulated data provided on the website under randomized problems. (5.3, 63.7) (10.6. 54.8) (15.9, 46) (21.2, 37.7) (26.5, 32) (31.8, 26.6). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (10, 16.51) (30, 8.89) (45, 5.08) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: As the basis for my graph, I used ( 5.3, 63.7) (15.9, 46) (26.5, 32)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 16.51 = 100a + 10b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The point (5.3, 63.7) gives me the equation 28.09a + 5.3b + c = 63.7 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 8.89 = 900a + 30b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The point (15.9, 46) gives me the equation 252.81a +15.9b + c = 46 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 5.08 = 2025a + 45b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The point (26.5,32) gives me the equation 702.25a + 26.5b + c = 32. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -7.32 = 800a + 20b confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Subtracting the second equation from the third gave me 449.44a + 10.6b = -14. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -3.81 = 1125a + 15b confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Subtracting the first equation from the third gave me 674.16a + 21.2b = -31.7. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To solve for a, I eliminated b and then multiplied the first new equation by 15 and the second by 20. After that, I added the two resulting equations from the multiplication and then I divided the two numbers to get a. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated b by multiplying the first equation by 21.2, which was the b value in the second equation. Then, I multiplied the seond equation by -10.6, which was the b value of the first equation, only I made it negative so they would cancel out. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a = -0.00552 and b = -0.1602 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: a = .0165, b = -2 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: c = 18.664 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: c = 73.4 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = -.00552x^2 - .1602x + 18.664
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: y = (.0165)x^2 + (-2)x + 73.4. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is your depth prediction for the given clock time (give clock time also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: My depth prediction is 38.552 cm
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The given clock time was 46 seconds, and my depth prediction was 16.314 cm.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat clock time corresponds to the given depth (give depth also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The problem didn’t specify a depth. confidence rating #$&*:: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** INSTRUCTOR COMMENT: The exercise should have specified a depth. The specifics will depend on your model and the requested depth. For your model y = (.0165)x^2 + (-2)x + 73.4, if we wanted to find the clock time associated with depth 68 we would note that depth is y, so we would let y be 68 and solve the resulting equation: 68 = .01t^2 - 1.6t + 126 using the quadratic formula. There are two solutions, x = 55.5 and x = 104.5, approximately. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK
.............................................
Given Solution: ** STUDENT SOLUTION: Grade vs. percent of assignments reviewed (0, 1) (10, 1.790569) (20, 2.118034) (30, 2.369306) (40, 2.581139) (50, 2.767767) (60, 2.936492) (70, 3.09165) (80, 3.236068) (90, 3.371708) (100, 3.5). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (30, 2.369306) (50, 2.767767) (70, 3.09165) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OK
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: (20, 2.118034) (50, 2.767767) (100, 3.5)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2.369306 = 900a + 30b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 400a + 20b + c = 2.118034** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2.767767 = 2500a + 50b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 2500a + 50b + c = 2.767767 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3.09165 = 4900a + 70b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 10,000a + 100b + c = 3.5 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 0.722344 = 4000a + 40b confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 7500a + 50b = .732233. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 0.323883 = 2400a + 20b confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Subracting the first equation from the third I go 9600a + 80b = 1.381966 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Rather than explain, I will show exactly how I solves for a: -Multiply the values in each equation by the opposing factor: 20 and 40 (0.722344 = 4000a + 40b) * 20 (0.323883 = 2400a + 20b) * 40 Results: 14.44688 = 80000a + 800b 12.95532 = 96000a + 800b -Add the values in each equation together: 27.4022 = 176000a
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated the variable b. In order to do this, I multiplied the first new equation by 80 and the second new equation by -50. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a = 1.556943 b = -155.6762414 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: a = -.0000876638 b = .01727 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: C = 3271.407848 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: c = 1.773. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = 1.557 x^2 - 155.676 x + 3271.408 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** y = -.0000876638 x^2 + (.01727)x + 1.773 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is your percent-of-review prediction for the given range of grades (give grade range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I used 3.3 and received the numbers -1 and -6, which seem to be beyond the scope of acceptable grades. This seems to be an impossible value.
.............................................
Given Solution: ** The precise solution depends on the model desired average. For example if the model is y = -.00028 x^2 + .06 x + .5 (your model will probably be different from this) and the grade average desired is 3.3 we would find the percent of review x corresponding to grade average y = 3.3 then we have 3.3 = -.00028 x^2 + .06 x + .5. This equation is easily solved using the quadratic formula, remembering to put the equation into the required form a x^2 + b x + c = 0. We get two solutions, x = 69 and x = 146. Our solutions are therefore 69% grade review, which is realistically within the 0 - 100% range, and 146%, which we might reject as being outside the range of possibility. To get a range you would solve two equations, on each for the percent of review for the lower and higher ends of the range. In many models the attempt to solve for a 4.0 average results in an expression which includes the square root of a negative number; this indicates that there is no real solution and that a 4.0 is not possible. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat grade average corresponds to the given percent of review (give grade average also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If I plug in -6 into my model, I receive 4262 as my result. If I plug in -1 into my model, I receive 3429 as my result.
.............................................
Given Solution: ** Here you plug in your percent of review for the variable. For example if your model is y = -.00028 x^2 + .06 x + .5 and the percent of review is 75, you plug in 75 for x and evaluate the result. The result gives you the grade average corresponding to the percent of review according to the model. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qHow well does your model fit the data (support your answer)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: My model doesn’t fit the data. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2
.............................................
Given Solution: ** You should have evaluated your function at each given percent of review-i.e., at 0, 10, 20, 30, . 100 to get the predicted grade average for each. Comparing your results with the given grade averages shows whether your model fits the data. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): What did I do wrong?
.............................................
Given Solution: ** STUDENT SOLUTION: (1, 935.1395) (2, 264..4411) (3, 105.1209) (4, 61.01488) (5, 43.06238) (6, 25.91537) (7, 19.92772) (8, 16.27232) (9, 11.28082) (10, 9.484465)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (2, 264.4411) (4, 61.01488) (8, 16.27232) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: (2, 264.4411) (4, 61.01488) (8, 16.27232) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 264.4411 = 4a + 2b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 4a + 2b + c = 264.4411** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 61.01488 = 16a + 4b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 16a + 4b + c = 61.01488** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 16.27232 = 64a + 8b + c confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 64a + 8b + c = 16.27232** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -44.7426 = 48a + 4b confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 48a + 4b = -44.74256** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: OK ********************************************* Question: `qGive the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -248.1688 = 60a + 6b confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 60a + 6b = -248.16878** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I eliminated b and then multiplied the first equation by 4 and the second equation by 6. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: I solved for a by eliminating the variable b. I multiplied the first new equation by 4 and the second new equation by -6 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat values did you get for a and b YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a = 2.3885 and b = -65.2465 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: a = 15.088, b = -192.24 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The answers are not similar. I have no idea how this occurred. ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: c = 384.939 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: c = 588.5691** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Answers still don’t line up. ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = 2.3885x^2 - 65.2465x + 384.939 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: y = (15.088) x^2 - (192.24)x + 588.5691 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The models are nowhere near the same. ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat is your illumination prediction for the given distance (give distance also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: X = 1.6 My prediction is 286.66 w/m^2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The given distance was 1.6 Earth distances from the sun. My illumination prediction was 319.61 w/m^2, obtained by evaluating my function model for x = 1.6. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The predictions are not the same. ------------------------------------------------ Self-critique Rating: 2 ********************************************* Question: `qWhat distances correspond to the given illumination range (give illumination range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: It all depends on the model and range of averages. It seems like this scenario doesn’t involve the use of a quadratic model but perhaps something else. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3
.............................................
Given Solution: ** The precise solution depends on the model and the range of averages. For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations 25=9.4 r^2 - 139 r + 500 and 100 =9.4 r^2 - 139 r + 500 Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data. The solutions which correspond to the data are r = 3.9 when y = 100 and r = 5.4 when y = 25. So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100. Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. ** "
.............................................
Given Solution: ** The precise solution depends on the model and the range of averages. For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations 25=9.4 r^2 - 139 r + 500 and 100 =9.4 r^2 - 139 r + 500 Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data. The solutions which correspond to the data are r = 3.9 when y = 100 and r = 5.4 when y = 25. So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100. Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. ** "