query 2

course Mth 158

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

002. `* 2

*********************************************

Question: * R.2.46 (was R.2.36) Evaluate for x = -2, and y = 3 the expression (2x - 3) / y and explain how you got your result.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: First sub -2 for x and 3for y and this gives you

=(2*(-2) - 3)/3

=(-4-3)/3

=-7/3.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** Starting with (2x-3)/y we substitute x=-2 and y=3 to get

(2*(-2) - 3)/3 =

(-4-3)/3=

-7/3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):none

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * R.2. 55 (was R.2.45) Evaluate for x = 3 and y = -2: | |4x| - |5y| | and explain how you got your result.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: First sub x for 3and y for -2 and you get

| 4*3 | - | 5*-2 | =

| 12 | - | -10 | = 2

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** Starting with | | 4x |- | 5y | | we substitute x=3 and y=-2 to get

| | 4*3 | - | 5*-2 | | =

| | 12 | - | -10 | | =

| 12-10 | =

| 2 | =

2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):none

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * R.2.64 (was R.2.54) Explain what values, if any, cannot be present in the domain of the expression (-9x^2 - x + 1) / (x^3 + x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: This is pretty simply. zero can not be domain of this expression because zero is undefined in division.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The denominator of this expression cannot be zero, since division by zero is undefined.

Since x^3 + x factors into (x^2 + 1) ( x ) we see that x^3 + x = 0 is, and only if, either x^2 + 1 = 0 or x = 0.

Since x^2 cannot be negative x^2 + 1 cannot be 0, so x = 0 is indeed the only value for which x^3 + x = 0. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I believe I got this correct but could you go into a little more detail or give me another example if I am incorrect in thinking I got this right.

You either said or implied most of what's in the given solution. However to be sure you can apply this reasoning in other problems, you should understand the details as explained in the given solution.

------------------------------------------------

Self-critique Rating:3

*************************************** ******

Question:

* R.2.76 \ 73 (was R.4.6). What is -4^-2 and how did you use the laws of exponents to get your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: order of operations implies exponentiation before multiplication; the - in front of the 4 is not part of the 4 but is an implicit multiplication by -1. Thus only 4 is raised to the -2 power.

Starting with the expression -4^(-2):

Since a^-b = 1 / (a^b), we have

4^-2 = 1 / (4)^2 = 1 / 16.

The - in front then gives us -4^(-2) = - ( 1/ 16) = -1/16.

If the intent was to take -4 to the -2 power the expression would have been written (-4)^(-2)

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** order of operations implies exponentiation before multiplication; the - in front of the 4 is not part of the 4 but is an implicit multiplication by -1. Thus only 4 is raised to the -2 power.

Starting with the expression -4^(-2):

Since a^-b = 1 / (a^b), we have

4^-2 = 1 / (4)^2 = 1 / 16.

The - in front then gives us -4^(-2) = - ( 1/ 16) = -1/16.

If the intent was to take -4 to the -2 power the expression would have been written (-4)^(-2).**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):none

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

* Extra Problem. What is (3^-2 * 5^3) / (3^2 * 5) and how did you use the laws of exponents to get your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 3^(-2)/3^2 * 5^3 / 5. Using the fact that a^b / a^c = a^(b-c) we get

3^(-2 -2) * 5^(3-1), which gives us

3^-4 * 5^2. Using a^(-b) = 1 / a^b we get

(1/3^4) * 5^2. Simplifying we have

(1/81) * 25 = 25/81.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Starting with (3^(-2)*5^3)/(3^2*5):

Grouping factors with like bases we have

3^(-2)/3^2 * 5^3 / 5. Using the fact that a^b / a^c = a^(b-c) we get

3^(-2 -2) * 5^(3-1), which gives us

3^-4 * 5^2. Using a^(-b) = 1 / a^b we get

(1/3^4) * 5^2. Simplifying we have

(1/81) * 25 = 25/81. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):none

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

* R.2.94. Express [ 5 x^-2 / (6 y^-2) ] ^ -3 with only positive exponents and explain how you used the laws of exponents to get your result.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: [ 5 x^-2 / (6 y^-2) ] ^ -3 = (5 x^-2)^-3 / (6 y^-2)^-3, since (a/b)^c = a^c / b^c. This simplifies to 5^-3 (x^-2)^-3 / [ 6^-3 (y^-2)^-3 ] since (ab)^c = a^c b^c. Then since (a^b)^c = a^(bc) we have 5^-3 x^6 / [ 6^-3 y^6 ] . We rearrange this to get the result

6^3 x^6 / (5^3 y^6), since a^-b = 1 / a^b.

confidence rating:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

[ 5 x^-2 / (6 y^-2) ] ^ -3 = (5 x^-2)^-3 / (6 y^-2)^-3, since (a/b)^c = a^c / b^c. This simplifies to

5^-3 (x^-2)^-3 / [ 6^-3 (y^-2)^-3 ] since (ab)^c = a^c b^c. Then since (a^b)^c = a^(bc) we have

5^-3 x^6 / [ 6^-3 y^6 ] . We rearrange this to get the result

6^3 x^6 / (5^3 y^6), since a^-b = 1 / a^b.

STUDENT QUESTION:

I do not see how you can take and seperate the problem down like this has it seems to just have reversed the problem

around in a different ordering and I do not see how this changed the exponets from being negative

Is there anyway you can explain this problem in a little more depth

INSTRUCTOR RESPONSE:

A fundamental law of exponents is that exponentiation distributes over multiplication, so that

(a * b) ^ c = a^c * b^c and

(a / b) ^ c = a^c / b^c

More specifically, if c = -3 then we have

( a * b ) ^ (-3) = a * (-3) * b^(-3) and

( a / b ) ^ (-3) = a ^ (-3) / b^(-3).

Now

a ^ (3) / b^(3) = 1 / a ^ (3) / (1 / b^(3)) and

1 / a ^ (3) / (1 / b^(3)) = 1 / a^3 * (b^3 / 1) = b^3 / a^3.

This principle applies to any string of multiplcations and division, so for example

( a * b / (c * d) ) ^ e = a^e * b^e / (c^e * d^e).

If e = -3 then we would have

( a * b / (c * d) ) ^ (-3) = a^(-3) * b^(-3) / (c^(-3) * d^(-3)).

Since the -3 power is the reciprocal of the 3 power this expression becomes

1/a^(3) * (1/b^(3)) / (1/c^(3) * (1/d^(3))), which is easily seen to be equal to

1 / (a^3 * b^3) / (1 / (c^3 * d^3) ).

Dividing by (1 / (c^3 * d^3) ) is the same as multiplying by (c^3 * d^3) / 1 so

1 / (a^3 * b^3) / (1 / (c^3 * d^3) ) = 1 / (a^3 * b^3) * (c^3 * d^3) = (c^3 * d^3) / (a^3 * b^3).

You should have written the above expressions, which are difficult to read in this notation, on paper, applying the order of operations. The expressions you wrote down should look like the ones below. Be sure you understand the translation from the 'typewriter notation' above to the standard notation depicted below, and be sure you know how to write each of the expressions depicted below in standard notation:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):none

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

* Extra Problem. Express (-8 x^3) ^ -2 with only positive exponents and explain how you used the laws of exponents to get your result.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(-8x^3)^-2 =

(-8)^-2*(x^3)^-2 =

1 / (-8)^2 * 1 / (x^3)^2 =

1/64 * 1/x^6 =

1 / (64 x^6).

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** ERRONEOUS STUDENT SOLUTION:

(-8x^3)^-2

-1/(-8^2 * x^3+2)

1/64x^5

INSTRUCTOR COMMENT:

1/64x^5 means 1 / 64 * x^5 = x^5 / 64. This is not what you meant but it is the only correct interpretation of what you wrote.

Also it's not x^3 * x^2, which would be x^5, but (x^3)^2.

There are several ways to get the solution. Two ways are shown below. They make more sense if you write them out in standard notation.

ONE CORRECT SOLUTION:

(-8x^3)^-2 =

(-8)^-2*(x^3)^-2 =

1 / (-8)^2 * 1 / (x^3)^2 =

1/64 * 1/x^6 =

1 / (64 x^6).

Alternatively

(-8 x^3)^-2 =

1 / [ (-8 x^3)^2] =

1 / [ (-8)^2 (x^3)^2 ] =

1 / ( 64 x^6 ). **

Question * R.2.90 (was R.4.36). Express (x^-2 y) / (x y^2) with only positive exponents and explain how you used the laws of exponents to get your result.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(1/x^2 * y) / (x * y^2)

= (1/x^2 * y) * 1 / (x * y^2)

= y * 1 / ( x^2 * x * y^2)

= y / (x^3 y^2)

= 1 / (x^3 y).

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

(1/x^2 * y) / (x * y^2)

= (1/x^2 * y) * 1 / (x * y^2)

= y * 1 / ( x^2 * x * y^2)

= y / (x^3 y^2)

= 1 / (x^3 y).

Alternatively, or as a check, you could use positive and negative exponents, then in the last step express everything in terms of positive exponents, as follows:

(x^-2y)/(xy^2)

= x^-2 * y * x^-1 * y^-2

= x^(-2 - 1) * y^(1 - 2)

= x^-3 y^-1

= 1 / (x^3 y).

STUDENT QUESTION

I wrote it down on paper and I am still a little confused. I understand it down to the 3rd step and then I lose the meaning of the law of exponents.

Why does it change to:

(1/x^2 * y) multiplied by 1/xy^2 the multiplication throws me off.

INSTRUCTOR RESPONSE

(1/x^2 * y) means ( (1/x^2) * y, which is the same as (y / x^2).

So (1/x^2 * y) / (x * y^2) means

(y / x^2) / (x * y^2).

Division by (x * y^2) is the same as multiplication by 1 / (x * y^2) .

So (y / x^2) / (x * y^2) means

(y / x^2) * (1 / (x * y^2)). Multiplying the numerators and denominators of these fractions we have

(y * 1) / (x^2 * x * y^2), which is

y / (x^3 * y^2). Dividing both numerator and denominator by y we have

1 / (x^2 * y).

Let me know if this doesn't help.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):none

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

* Extra Problem. . Express 4 x^-2 (y z)^-1 / [ (-5)^2 x^4 y^2 z^-5 ] with only positive exponents and explain how you used the laws of exponents to get your result.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] Squaring the -5 and using the fact that (yz)^-1 = y^1 * z^-1: 4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} Grouping the numbers, and the x, the y and the z expression: (4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) Simplifying by the laws of exponents: (4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) Simplifying further: (4/25) * x^-6 * y^-3 * z^4 Writing with positive exponents:

4z^4/ (25x^6 * y^3 ) **

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** Starting with

4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] Squaring the -5 and using the fact that (yz)^-1 = y^1 * z^-1:

4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} Grouping the numbers, and the x, the y and the z expression:

(4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) Simplifying by the laws of exponents:

(4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) Simplifying further:

(4/25) * x^-6 * y^-3 * z^4 Writing with positive exponents:

4z^4/ (25x^6 * y^3 ) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):none

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

* R.2.122 (was R.4.72). Express 0.00421 in scientific notation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 4.21*10^-3

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** 0.00421 in scientific notation is 4.21*10^-3. This is expressed on many calculators as 4.21 E-4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):none

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

* R.2.128 (was R.4.78). Express 9.7 * 10^3 in decimal notation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 9.7

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** 9.7*10^3 in decimal notation is 9.7 * 1000 = 9700 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):none

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

* R.2.152 \ 150 (was R.2.78) If an unhealthy temperature is one for which | T - 98.6 | > 1.5, then how do you show that T = 97 and T = 100 are unhealthy?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5.

But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or

| 1.4 | > 1.5, giving us

1.4>1.5, which is an untrue statement

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5.

But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or

| 1.4 | > 1.5, giving us

1.4>1.5, which is an untrue statement. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):none

------------------------------------------------

Self-critique Rating:"

&#This looks good. See my notes. Let me know if you have any questions. &#