Query 4

#$&*

course Mth 174

Questions from text assignment:

*********************************************

Question: Section 7.2 Problem 3

7.2.3 (previously 7.2.12. (3d edition 7.2.11, 2d edition 7.3.12)) Give an antiderivative of sin^2 x

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I used integration by parts to get the answer -sinx(cosx) - int(cos^2 x).

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: Good student solution:

The answer is -1/2 (sinx * cosx) + x/2 + C

I arrived at this using integration by parts:

u= sinx u' = cosx

v'= sinx v = -cosx

int(sin^2x)= sinx(-cosx) - int(cos x (-cos x))

int(sin^2x)= -sinx(cosx) +int(cos^2(x))

cos^2(x) = 1-sin^2(x) therefore

int(sin^2x)= -sinx(cosx) + int(1-sin^2(x))

int(sin^2x)= -sinx(cosx) + int(1) - int(sin^2(x))

2int(sin^2x)= -sinx(cosx) + int(1dx)

2int(sin^2x)= -sinx(cosx) + x

int(sin^2x)= -1/2 sinx(-cosx) + x/2

INSTRUCTOR COMMEN-T: This is the appropriate method to use in this section.

You could alternatively use trigonometric identities such as

sin^2(x) = (1 - cos(2x) ) / 2 and sin(2x) = 2 sin x cos x.

Solution by trigonometric identities:

sin^2(x) = (1 - cos(2x) ) / 2 so the antiderivative is

1/2 ( x - sin(2x) / 2 ) + c =

1/2 ( x - sin x cos x) + c.

note that sin(2x) = 2 sin x cos x.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I was on the right track but forgot that cos^x= 1 - sin^x. I should have then completed the problem to get -1/2 (sinx * cosx) + x/2 + C.

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: Section 7.2 Problem 4

problem 7.2.4 (previously 7.2.16 was 7.3.18) antiderivative of (t+2) `sqrt(2+3t)

**** what is the requested antiderivative?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Using integration by parts, I got the answer: (3t+2)^(3/2) [ 30 (t+2) - 4(3t+2) ] / 135

@&

Good, but you would be expected to simplify

30 (t+2) - 4(3t+2).

*@

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: If you use

u=t+2

u'=1

v'=(2+3t)^(1/2)

v=2/9 (3t+2)^(3/2)

then you get

2/9 (t+2) (3t+2)^(3/2) - integral( 2/9 (3t+2)^(3/2) dt ) or

2/9 (t+2) (3t+2)^(3/2) - 2 / (3 * 5/2 * 9) (3t+2)^(5/2) or

2/9 (t+2) (3t+2)^(3/2) - 4/135 (3t+2)^(5/2). Factoring out (3t + 2)^(3/2) you get

(3t+2)^(3/2) [ 2/9 (t+2) - 4/135 (3t+2) ] or

(3t+2)^(3/2) [ 30/135 (t+2) - 4/135 (3t+2) ] or

(3t+2)^(3/2) [ 30 (t+2) - 4(3t+2) ] / 135 which simplifies to

2( 9t + 26) ( 3t+2)^(3/2) / 135.

.........................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: Section 7.2 Problem 8

**** problem 7.2.8 (previously 7.2.27 was 7.3.12) antiderivative of x^5 cos(x^3)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I could not figure out what to use for u and v’ for to continue in the integration by parts method.

confidence rating #$&*: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

It usually takes some trial and error to get this one:

• We could try u = x^5, v ' = cos(x^3), but we can't integrate cos(x^3) to get an expression for v.

• We could try u = cos(x^3) and v' = x^5. We would get u ' = -3x^2 cos(x^3) and v = x^6 / 6. We would end up having to integrate v u ' = -x^8 / 18 cos(x^3), and that's worse than what we started with.

• We could try u = x^4 and v ' = x cos(x^3), or u = x^3 and v ' = x^2 cos(x^3), or u = x^2 and v ' = x^3 cos(x^3), etc..

The combination that works is the one for which we can find an antiderivative of v '. That turns out to be the following:

Let u = x^3, v' = x^2 cos(x^3).

Then u' = 3 x^2 and v = 1/3 sin(x^3) so you have

1/3 * x^3 sin(x^3) - 1/3 * int(3 x^2 sin(x^3) dx).

Now let u = x^3 so du/dx = 3x^2. You get

1/3 * x^3 sin(x^3) - 1/3 * int( sin u du ) = 1/3 (x^3 sin(x^3) + cos u ) = 1/3 ( x^3 sin(x^3) + cos(x^3) ).

It's pretty neat the way this one works out, but you have to try a lot of u and v combinations before you come across the right one.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

We use x^3 for u and x^2cos(x^3) for v’. By plugging in the values for u, u’, v, and v’, we get 1/3 * x^3 sin(x^3) - 1/3 * int( sin u du ) = 1/3 (x^3 sin(x^3) + cos u ) = 1/3 ( x^3 sin(x^3) + cos(x^3) ).

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: **** What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I basically used trial and error to find the antiderivative.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

TYPICAL STUDENT COMMENT:

I tried several things:

v'=cos(x^3)

v=int of v'

u=x^5

u'=5x^4

I tried to figure out the int of cos(x^3), but I keep getting confused:

It becomes the int of 1/3cosudu/u^(1/3)

I feel like I`m going in circles with some of these.

INSTRUCTOR RESPONSE:

As noted in the given solution, it often takes some trial and error. With practice you learn what to look for.

.........................................

00:53:03

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: Section 7.2 Problem 13

problem7.2.13 (previously 7.2.50 was 7.3.48) f(0)=6, f(1) = 5, f'(1) = 2; find int( x f'', x, 0, 1).

**** What is the value of the requested integral?

I used integration by parts to get u=x, v’=f’”(x), u’=1, and v=f’(x). I evaluated to get 1* f’(1) - (f(1) - f(0)) = 2+6-5 = 3.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

You don't need to know the specific function. You can find this one using integration by parts:

Let u=x and v' = f''(x). Then

u'=1 and v=f'(x).

uv-integral of u'v is thus

xf'(x)-integral of f'(x)

Integral of f'(x) is f(x). So antiderivative is

x f ' (x)-f(x), which we evaluate between 0 and 1. Using the given values we get

1 * f'(1)- (f(1) - f(0)) =

f ‘ (1) + f(0) - f(1) =

2 + 6 - 5 = 3.

STUDENT COMMENT: it seems awkward that the area is negative, so I believe that something is mixed up, but I have looked over it, and I`m not sure what exactly needs to be corrected

** the integral isn't really the area. If the function is negative then the integral over a positive interval will be the negative of the area. **

.........................................

**** Query Add comments on any surprises or insights you experienced as a result of this assignment.

......!!!!!!!!...................................

00:58:57

This was a very tedious assignment, but it will surely be a useful tool in computing areas over fixed integrals in the future. I do need more practice at these integrals, because I feel as if I`m going in circles on some of them. Any suggestions for proper techniques or hints on how to choose u and v? I have tried to look at how each variable would integrate the easiest, but I seem to make it look even more complex than it did at the beginning.

** you want to look at it that way, but sometimes you just have to try every possible combination. For x^5 cos(x^3) you can use

u = x^5, v' = cos(x^3), but you can't integrate v'. At this point you might see that you need an x^2 with the cos(x^3) and then you've got it, if you just plow ahead and trust your reasoning.

If you don't see it the next thing to try is logically u = x^4, v' = x cos(x^3). Doesn't work, but the next thing would be u = x^3, v' = x^2 cos(x^3) and you've got it if you work it through.

Of course there are more complicated combinations like u = x cos(x^3) and v' = x^4, but as you'll see if you work out a few such combinations, they usually give you an expression more complicated than the one you started with. **

This assignment was very time consuming because many of the problems had to be worked several times to achieve a

suitable answer. I will definitely need to practice doing more

** Integration technique does take a good deal of practice. There really aren't any shortcuts.

It's very important, of course, to always check your solutions by differentiating your antiderivatives. This helps greatly, both as a check and as a way to begin recognizing common patterns. **

.........................................

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Section 7.2 Problem 13

problem7.2.13 (previously 7.2.50 was 7.3.48) f(0)=6, f(1) = 5, f'(1) = 2; find int( x f'', x, 0, 1).

**** What is the value of the requested integral?

I used integration by parts to get u=x, v’=f’”(x), u’=1, and v=f’(x). I evaluated to get 1* f’(1) - (f(1) - f(0)) = 2+6-5 = 3.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

You don't need to know the specific function. You can find this one using integration by parts:

Let u=x and v' = f''(x). Then

u'=1 and v=f'(x).

uv-integral of u'v is thus

xf'(x)-integral of f'(x)

Integral of f'(x) is f(x). So antiderivative is

x f ' (x)-f(x), which we evaluate between 0 and 1. Using the given values we get

1 * f'(1)- (f(1) - f(0)) =

f ‘ (1) + f(0) - f(1) =

2 + 6 - 5 = 3.

STUDENT COMMENT: it seems awkward that the area is negative, so I believe that something is mixed up, but I have looked over it, and I`m not sure what exactly needs to be corrected

** the integral isn't really the area. If the function is negative then the integral over a positive interval will be the negative of the area. **

.........................................

**** Query Add comments on any surprises or insights you experienced as a result of this assignment.

......!!!!!!!!...................................

00:58:57

This was a very tedious assignment, but it will surely be a useful tool in computing areas over fixed integrals in the future. I do need more practice at these integrals, because I feel as if I`m going in circles on some of them. Any suggestions for proper techniques or hints on how to choose u and v? I have tried to look at how each variable would integrate the easiest, but I seem to make it look even more complex than it did at the beginning.

** you want to look at it that way, but sometimes you just have to try every possible combination. For x^5 cos(x^3) you can use

u = x^5, v' = cos(x^3), but you can't integrate v'. At this point you might see that you need an x^2 with the cos(x^3) and then you've got it, if you just plow ahead and trust your reasoning.

If you don't see it the next thing to try is logically u = x^4, v' = x cos(x^3). Doesn't work, but the next thing would be u = x^3, v' = x^2 cos(x^3) and you've got it if you work it through.

Of course there are more complicated combinations like u = x cos(x^3) and v' = x^4, but as you'll see if you work out a few such combinations, they usually give you an expression more complicated than the one you started with. **

This assignment was very time consuming because many of the problems had to be worked several times to achieve a

suitable answer. I will definitely need to practice doing more

** Integration technique does take a good deal of practice. There really aren't any shortcuts.

It's very important, of course, to always check your solutions by differentiating your antiderivatives. This helps greatly, both as a check and as a way to begin recognizing common patterns. **

.........................................

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. See my notes. Let me know if you have any questions. &#