#$&* course MTH 279 4/19 7pmI apologize for getting these queries 26 and 27 turned in so late. I could have gotten them in earlier, but not with the same quality. I have struggled with the matrix math a bit, so I decided to finish off my linear algebra class before I finished these queries. Query 26 Differential Equations
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Find the solutions to y ' = A y when A = [ 4,2,0; 0,1,3; 0,0, -2 ] and y(0) = [-1;0;3]. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y=3[ 1/3e^-2t ; -e^-2t ; e^-2t] + 3[ -2/3e^t ; e^t ; 0] det(A - lambda*I) ' det[4 - lambda , 2 , 0 ; - , 1- lambds , 3 ; 0 , 0 , -2 - lambda] gives us lambda_1 = -2, lambda_2 = 1, lambda_3 = 4 eigenvector for lambda_1 = (A - -2*I)x=[ 0 ; 0 ; 0] gives x=[ 1/3 ; -1 ; 1] eigenvector for lambda_2 = (A - 1*I)x=[ 0 ; 0 ; 0] gives x= [-2/3 ; 1 ; 0]
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Three tanks, each full of a solution and all of equal volume V, are each connected to each of the others by two pipes. Each tank also has a third pipe through which pure water flows into it, and a fourth through which water exits. The flow rate r through every pipe is the same. Write the system of equations that relates the quantities Q_1, Q_2 and Q_3 representing the amount of solute in each tank as a function of time. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: change in conc. wrt t = rate of inflow - rate of outflow and basically we have 3 outflows in each pipe (each pipe is connected to two others and another that water exists out of) and 2 inflows, one from each of the other tanks. I'm setting this up assuming that the pipes that connect the tanks are simultaneously in and outflow pipes....which may not be correct. This gives us a system of 3 equations... Q_1' = -3(r/V)Q_1 + (r/V)Q_2 + (r/V)Q_3 Q_2' = (r/V)Q_1 - 3(r/V)Q_2 + (r/V)Q_3 Q_3' = (r/V)Q_1 + (r/V)Q_2 - 3(r/V)Q_3 which gives us the matrix equation: [Q_1 ; Q_2 ; Q_3 ]' = r/V [ -3 , 1 , 1 ; 1 -3 , 1 ; 1 , 1 , -3] * [ Q_1 ; Q_2 ; Q_3] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK"