Describing Graphs

course mth 151

You submitted this without an access code. You must copy your correct access code into the spaces on the form where it is requested.

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

Student Name: assignment #002 002. Describing Graphs

......!!!!!!!!...................................

11:47:21 `q001. You will frequently need to describe the graphs you have constructed in this course. This exercise is designed to get you used to some of the terminology we use to describe graphs. Please complete this exercise and email your work to the instructor. Problem 1. We make a table for y = 2x + 7 as follows: We construct two columns, and label the first column 'x' and the second 'y'. Put the numbers -3, -2, -1, -, 1, 2, 3 in the 'x' column. We substitute -3 into the expression and get y = 2(-3) + 7 = 1. We substitute -2 and get y = 2(-2) + 7 = 3. Substituting the remaining numbers we get y values 5, 7, 9, 11 and 13. These numbers go into the second column, each next to the x value from which it was obtained. We then graph these points on a set of x-y coordinate axes. Noting that these points lie on a straight line, we then construct the line through the points. Now make a table for and graph the function y = 3x - 4. Identify the intercepts of the graph, i.e., the points where the graph goes through the x and the y axes.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. When x = 0 then the graph intercepts the y-axis at (0,-4). Then when y = 0 the graph intercepts the x-axis at (4/3, 0).

.................................................

......!!!!!!!!...................................

11:47:45 The graph goes through the x axis when y = 0 and through the y axis when x = 0. The x-intercept is therefore when 0 = 3x - 4, so 4 = 3x and x = 4/3. The y-intercept is when y = 3 * 0 - 4 = -4. Thus the x intercept is at (4/3, 0) and the y intercept is at (0, -4). Your graph should confirm this.

......!!!!!!!!...................................

RESPONSE --> OK

.................................................

......!!!!!!!!...................................

11:59:39 `q002. Does the steepness of the graph in the preceding exercise (of the function y = 3x - 4) change? If so describe how it changes.

......!!!!!!!!...................................

RESPONSE --> No, it doesn't change. The slope of the graph is always 3 units making it climb at that constant slope.

.................................................

......!!!!!!!!...................................

11:59:48 The graph forms a straight line with no change in steepness.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

12:00:42 `q003. What is the slope of the graph of the preceding two exercises (the function ia y = 3x - 4;slope is rise / run between two points of the graph)?

......!!!!!!!!...................................

RESPONSE --> The slope is 3 units of rise over 1 unit of run. Therefore giving you a slope of 3.

.................................................

......!!!!!!!!...................................

12:01:07 Between any two points of the graph rise / run = 3. For example, when x = 2 we have y = 3 * 2 - 4 = 2 and when x = 8 we have y = 3 * 8 - 4 = 20. Between these points the rise is 20 - 2 = 18 and the run is 8 - 2 = 6 so the slope is rise / run = 18 / 6 = 3. Note that 3 is the coefficient of x in y = 3x - 4. Note the following for reference in subsequent problems: The graph of this function is a straight line. The graph increases as we move from left to right. We therefore say that the graph is increasing, and that it is increasing at constant rate because the steepness of a straight line doesn't change.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

12:08:24 `q004. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE --> On the domain of 0 to 3 the graph is increasing. The steepness of the graph changes by incresing by the factor of x. I would say that it is increasing at a constant rate.

.................................................

......!!!!!!!!...................................

12:11:13 Graph points include (0,0), (1,1), (2,4) and (3,9). The y values are 0, 1, 4 and 9, which increase as we move from left to right. The increases between these points are 1, 3 and 5, so the graph not only increases, it increases at an increasing rate.

......!!!!!!!!...................................

RESPONSE --> The only thing that changes is the factor of x which is then squared. The squared doesn't change, so how does that change the rate? Wouldn't that just change the slope?

The slope is the rate at which the function changes. So if the quantity is increasing and the slope is increasing, the rate of change is increasing.

.................................................

......!!!!!!!!...................................

12:13:11 `q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE --> The graph is decreasing on the domain of -3 to 0. Yes, the steepness of graph is decreasing. The rate is decreasing at a decreasing rate.

.................................................

......!!!!!!!!...................................

12:13:28 From left to right the graph is decreasing (points (-3,9), (-2,4), (-1,1), (0,0) show y values 9, 4, 1, 0 as we move from left to right ). The magnitudes of the changes in x from 9 to 4 to 1 to 0 decrease, so the steepness is decreasing. Thus the graph is decreasing, but more and more slowly. We therefore say that the graph is decreasing at a decreasing rate.

......!!!!!!!!...................................

RESPONSE --> OK

.................................................

......!!!!!!!!...................................

12:21:23 `q006. Make a table of y vs. x for y = `sqrt(x). [note: `sqrt(x) means 'the square root of x']. Graph y = `sqrt(x) between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE --> The graph is increasing on the domain of 0 to 3. The steepness of the graph does change however it changes by a faster slope then gradually gets slower. I would say that it is increasing at a decreasing rate.

.................................................

......!!!!!!!!...................................

12:22:01 If you use x values 0, 1, 2, 3, 4 you will obtain graph points (0,0), (1,1), (2,1.414), (3. 1.732), (4,2). The y value changes by less and less for every succeeding x value. Thus the steepness of the graph is decreasing. The graph would be increasing at a decreasing rate.{}{} If the graph respresents the profile of a hill, the hill starts out very steep but gets easier and easier to climb. You are still climbing but you go up by less with each step, so the rate of increase is decreasing. {}{}If your graph doesn't look like this then you probably are not using a consistent scale for at least one of the axes. If your graph isn't as desribed take another look at your plot and make a note in your response indicating any difficulties.

......!!!!!!!!...................................

RESPONSE --> OK

.................................................

......!!!!!!!!...................................

12:29:51 `q007. Make a table of y vs. x for y = 5 * 2^(-x). Graph y = 5 * 2^(-x) between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE --> the graph is decreasing on the domain 0 to 3. The steepness of the graph changes by decreasing. I would say the graph is decreasing at a constant rate.

.................................................

......!!!!!!!!...................................

12:30:49 ** From basic algebra recall that a^(-b) = 1 / (a^b). So, for example: 2^-2 = 1 / (2^2) = 1/4, so 5 * 2^-2 = 5 * 1/4 = 5/4. 5* 2^-3 = 5 * (1 / 2^3) = 5 * 1/8 = 5/8. Etc. The decimal equivalents of the values for x = 0 to x = 3 will be 5, 2.5, 1.25, .625. These values decrease, but by less and less each time. The graph is therefore decreasing at a decreasing rate. **

......!!!!!!!!...................................

RESPONSE --> But the graph is decreasing by half each time. Would that not be constant?

Because half of a smaller and smaller quantity is less and less.

If the graph is marked off with a uniform scale for both the x and the y axis, the graph will clearly be decreasing, but more and more slowly.

.................................................

......!!!!!!!!...................................

12:33:10 `q008. Suppose you stand still in front of a driveway. A car starts out next to you and moves away from you, traveling faster and faster. If y represents the distance from you to the car and t represents the time in seconds since the car started out, would a graph of y vs. t be increasing or decreasing? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE --> The graph would be increasing. The graph would be increasing at a increasing rate.

.................................................

......!!!!!!!!...................................

12:33:27 ** The speed of the car increases so it goes further each second. On a graph of distance vs. clock time there would be a greater change in distance with each second, which would cause a greater slope with each subsequent second. The graph would therefore be increasing at an increasing rate. **

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

"

Good; see my responses. Let me know if you have additional questions.