Query 4

#$&*

course MTH 174

10/26/12

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

*********************************************

Question: Section 7.2 Problem 3

7.2.3 (previously 7.2.12. (3d edition 7.2.11, 2d edition 7.3.12)) Give an antiderivative of sin^2 x

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Int 1/2(1-cos 2x) dx

1/2 int (1 - cos 2x) dx

1/2 (x - sin(2x)) + C

1/2 (x - sin(x) cos(x) ) + C

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: Good student solution:

The answer is -1/2 (sinx * cosx) + x/2 + C

I arrived at this using integration by parts:

u= sinx u' = cosx

v'= sinx v = -cosx

int(sin^2x)= sinx(-cosx) - int(cosx(-cosx))

int(sin^2x)= -sinx(cosx) +int(cos^2(x))

cos^2(x) = 1-sin^2(x) therefore

int(sin^2x)= -sinx(cosx) + int(1-sin^2(x))

int(sin^2x)= -sinx(cosx) + int(1) - int(sin^2(x))

2int(sin^2x)= -sinx(cosx) + int(1dx)

2int(sin^2x)= -sinx(cosx) + x

int(sin^2x)= -1/2 sinx(-cosx) + x/2

INSTRUCTOR COMMENT: This is the appropriate method to use in this section.

You could alternatively use trigonometric identities such as

sin^2(x) = (1 - cos(2x) ) / 2 and sin(2x) = 2 sin x cos x.

Solution by trigonometric identities:

sin^2(x) = (1 - cos(2x) ) / 2 so the antiderivative is

1/2 ( x - sin(2x) / 2 ) + c =

1/2 ( x - sin x cos x) + c.

note that sin(2x) = 2 sin x cos x.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: Section 7.2 Problem 4

problem 7.2.4 (previously 7.2.16 was 7.3.18) antiderivative of (t+2) `sqrt(2+3t)

**** what is the requested antiderivative?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

U = t+2

Du = 1

Dv = (2+3t)^1/2

Int(2+3t)^1/2

U = 2+3t

Du = 3 dt

Dt = du/3

V = 2/9(2+3t)^3/2

(t+2)(2/9(2+3t)^3/2)) - int(2/9(2+3t)^3/2) dt

Int(2/9(2+3t)^3/2) dt

U = 2+3t

Du = 3 dt

Dt = du/3

2/9 int(u^3/2) du/3

2/27 int(u^3/2)

2/27 (1/(5/2)u^5/2)

4/135(2+3t)^5/2

(t+2)(2/9(2+3t)^3/2) - 4/135(2+3t)^5/2 + C

(2+3t)^3/2 (30/135(t+2) - 4/135(3t+2)

2(9t + 26)(3t+2)^3/2 / 135

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: If you use

u=t+2

u'=1

v'=(2+3t)^(1/2)

v=2/9 (3t+2)^(3/2)

then you get

2/9 (t+2) (3t+2)^(3/2) - integral( 2/9 (3t+2)^(3/2) dt ) or

2/9 (t+2) (3t+2)^(3/2) - 2 / (3 * 5/2 * 9) (3t+2)^(5/2) or

2/9 (t+2) (3t+2)^(3/2) - 4/135 (3t+2)^(5/2). Factoring out (3t + 2)^(3/2) you get

(3t+2)^(3/2) [ 2/9 (t+2) - 4/135 (3t+2) ] or

(3t+2)^(3/2) [ 30/135 (t+2) - 4/135 (3t+2) ] or

(3t+2)^(3/2) [ 30 (t+2) - 4(3t+2) ] / 135 which simplifies to

2( 9t + 26) ( 3t+2)^(3/2) / 135.

.........................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: Section 7.2 Problem 8

**** problem 7.2.8 (previously 7.2.27 was 7.3.12) antiderivative of x^5 cos(x^3)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

U = x^3

Du = 3x^2

Dv = x^2 cos(x^3)

V = 1/3 sin (x^3)

X^3(1/3 sin (x^3)) - int(1/3 sin(x^3) 3x^2 dx

1/3(x^3 sin x^3) - 1/3 int(sin (x^3) 3x^2) dx

U = x^3

Du = 3x^2 du

Dx = du/3x^2

1/3(x^3 sin (x^3)) - 1/3 int(sin u) 3x^2 du/3x^2

1/3(x^3 sin(x^3)) + 1/3 cos (u) + C

1/3(x sin (x^3) + cos (u)) + C

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

It usually takes some trial and error to get this one:

We could try u = x^5, v ' = cos(x^3), but we can't integrate cos(x^3) to get an expression for v.

We could try u = cos(x^3) and v' = x^5. We would get u ' = -3x^2 cos(x^3) and v = x^6 / 6. We would end up having to integrate v u ' = -x^8 / 18 cos(x^3), and that's worse than what we started with.

We could try u = x^4 and v ' = x cos(x^3), or u = x^3 and v ' = x^2 cos(x^3), or u = x^2 and v ' = x^3 cos(x^3), etc..

The combination that works is the one for which we can find an antiderivative of v '. That turns out to be the following:

Let u = x^3, v' = x^2 cos(x^3).

Then u' = 3 x^2 and v = 1/3 sin(x^3) so you have

1/3 * x^3 sin(x^3) - 1/3 * int(3 x^2 sin(x^3) dx).

Now let u = x^3 so du/dx = 3x^2. You get

1/3 * x^3 sin(x^3) - 1/3 * int( sin u du ) = 1/3 (x^3 sin(x^3) + cos u ) = 1/3 ( x^3 sin(x^3) + cos(x^3) ).

It's pretty neat the way this one works out, but you have to try a lot of u and v combinations before you come across the right one.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: **** What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I first used integration by parts and then applied substitution to the right-hand side terms to arrive at the final answer. I attempted multiple values for u and dv before arriving at the answer.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

TYPICAL STUDENT COMMENT:

I tried several things:

v'=cos(x^3)

v=int of v'

u=x^5

u'=5x^4

I tried to figure out the int of cos(x^3), but I keep getting confused:

It becomes the int of 1/3cosudu/u^(1/3)

I feel like I`m going in circles with some of these.

INSTRUCTOR RESPONSE:

As noted in the given solution, it often takes some trial and error. With practice you learn what to look for.

.........................................

00:53:03

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: **** What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I first used integration by parts and then applied substitution to the right-hand side terms to arrive at the final answer. I attempted multiple values for u and dv before arriving at the answer.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

TYPICAL STUDENT COMMENT:

I tried several things:

v'=cos(x^3)

v=int of v'

u=x^5

u'=5x^4

I tried to figure out the int of cos(x^3), but I keep getting confused:

It becomes the int of 1/3cosudu/u^(1/3)

I feel like I`m going in circles with some of these.

INSTRUCTOR RESPONSE:

As noted in the given solution, it often takes some trial and error. With practice you learn what to look for.

.........................................

00:53:03

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:ok

#*&!

&#Very good work. Let me know if you have questions. &#