#$&* course Mth 277 November 28 around 11:20pm. 12.2*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ self-critique rating #$&*: ********************************************* Question: `q002. Integrate 4x over D with respect to A using a double integral where D is the region bounded by 4 - x^2, y = 3x, and x = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 0<=x<=1 and 3x<=y<=4-x^2 Int (4x dy) from 3x to 4-x^2 4x from 3x to 4-x^2 gives me [4(4-x^2)]-[4(3x)] OR -4x^2-12x+16 Int (-4x^2-12x+16 dx) from 0 to 1 (-4x^3/3)-6x^2+16x from 0 to 1 gives me 26/3 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ self-critique rating #$&*: ********************************************* Question: `q003. Compute the following integral with the given order of integration and with the order changed: Int[ Int(4x^3 dy, 0, sqrt(x)) dx, 0, 4]. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Int (4x^3 dy) from 0 to sqrt x =4x^(7/2) Int (4x^(7/2) dx) from 0 to 4 =(8x^(9/2))/9 from 0 to 4 =4096/9 or 455.11 It’s asking to change the order and do it again and I don’t know how to do that. I DO think I would have to graph it and looking at the graph, see the regions that will correspond to it.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ self-critique rating #$&*: ********************************************* Question: `q004. Give two different ways to set up the integral of the area of the region D where D is the region in the first quadrant of the xy-plane bounded by y = 4/x^2 and y = 5 - x^2. Evaluate one of these integrals. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I got caught up on this one but I’ll put down what I attempted and maybe you can help me go from there: (4/x^2)=(5-x^2) 4=5x^2-x^4 -x^4+5x^2-4=0 x= +-1, +-2 A= (Int Int (dy, (4/x^2), (5-x^2)) dx, 1, 2) =Int ((5-x^2)-(4/x^2) dx) =(-x^3/3)+5x+(4/x) from 1 to 2 =2/3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):"