initial timing experiment

#$&*

phy 201

Your 'initial timing experiment' report has been received. Scroll down through the document to see any comments I might have inserted, and my final comment at the end.

** Initial Timing Experiment_labelMessages **

7:52 pm EST

6/8/14

** **

Copy this document, from this point to the end, into a word processor or text editor.

Follow the instructions, fill in your data and the results of your analysis in the given format.

Regularly save your document to your computer as you work.

When you have completed your work:

Copy the document into a text editor (e.g., Notepad; but NOT into a word processor or html editor, e.g., NOT into Word or FrontPage).

Highlight the contents of the text editor, and copy and paste those contents into the indicated box at the end of this form.

Click the Submit button and save your form confirmation.

Note: The majority of student report taking less than an hour on this experiment, though a few report significantly longer times.

Take reasonable care to get good data in this experiment. Try to do the timing as accurately as possible. Measurements of length, height, etc. should be reasonably accurate (e.g., with a meter stick or ruler you can measure to withing +- 1 millimeter, but it's not necessary to try to determine fractions of a millimeter).

In this experiment you will use the TIMER program, a hardcover book, the toy car that came in your lab materials package (or, if you do not yet have the package, a cylinder or some other object that will roll along the book in a relatively straight line), and a ruler or the equivalent (if you don't have one, note the Rulers link, which is also given on the Assignments page).

The book's cover should be straight and unbent.

The toy car (or other object) should roll fairly smoothly.

Place the book on a flat level tabletop. You will prop one end of the book up a little bit, so that when it is released the object will roll without your assistance, gradually speeding up, from the propped-up end to the lower end. However don't prop the end up too much. It should take at least two seconds for the ball to roll down the length of the book when it is released from rest. For a typical book, a stack of two or three quarters placed under one end works well.

Using the TIMER program determine how long it takes the ball to roll from one end of the ramp to the other, when released from rest. Once you've got the book set up, it takes only a few seconds to do a timing, so it won't take you long to time the object's motion at least three times.

Determine how far the object travels as it rolls from its initial position (where you first click the timer) to its final position (where you click at the end of the interval). This will probably be a bit less than the length of the book, due to the length of the object itself.

Determine how much higher one end of the book was than the other, and how far it is from the supports (e.g., the stack of quarters, or whatever you used to support one end) to the end of the book which rests on the table.

Then reverse the direction of the book on the tabletop, rotating the book an its supports (e.g., the stack of quarters) 180 degrees so that the ball will roll in exactly the opposite direction. Repeat your measurements.

In the box below describe your setup, being as specific as possible about the book used (title, ISBN) and the object being used (e.g., a can of vegetables (full or empty; should be specified) or a jar (again full or empty); anything round and smooth that will upon release roll fairly slowly down the incline), and what you used to prop the object up (be as specific as possible). Also describe how well the object rolled--did it roll smoothly, did it speed up and slow down, did it roll in a straight line or did its direction change somewhat?

your brief discussion/description/explanation: I used another physics book, Physics by James A Walker, ISBN: 978-0-321-90308-2, two 50-cent pieces to prop up book, and the small spool of tan thread inside the initial materials package (there was no toy car in my package). It rolled fairly smoothly. When it did not, I retimed it (did not record unsmooth trials). It rolled straight, but once it curved a little on the last 1/4 or so of the length.

#$&* (note that your answer should always start in one of the blank lines preceding the #$&* mark)

In the space indicated below report your data. State exactly what was measured, how it was measured, how accurately you believe it was measured and of course what the measurements were. Try to organize your report so the reader can easily scan your data and identify any patterns or trends.

your brief discussion/description/explanation:

The time was measured by the timer tool. I think this may have been accurate within 0.2 to 0.3 seconds based on my human error. The length was measured in mm and cm with the ruler provided. The length, I think, was more significantly more accurate than the timing.

Book propped up on the right:

2.046875 seconds

2.664063 seconds

2.679688 seconds

Book propped on left:

1.734375 seconds

2.179688 seconds

2.351563 seconds

Length of book (or amount of length of book spool traveled)

40.9 cm, or 409 mm

Height of coins (how much higher one end was from the other)

0.5 cm or 5 mm

#$&*

Using your data determine how fast the object was moving, on the average, as it rolled down the incline. Estimate how accurately you believe you were able to determine the object's average speed, and give the best reasons you can for your estimate of the accuracy.

your brief discussion/description/explanation:

18.4 cm/s

#$&*

How fast was the object moving at the beginning of the timed interval?

According to your previous calculation, what was its average speed during this interval?

Do you think the object, when it reached the lower end of the book, was moving at a speed greater or less than the average speed you calculated?

your brief discussion/description/explanation: I believe it was moving slower in the beginning and faster later. It was not obvious based on sight, but from what I observed from the videos, this should be the case. At the end, it should have been moving with greater speed.

#$&*

List the following in order, from least to greatest. Indicate 'ties': The object's initial speed, its final speed, its average speed, and the change in its speed as it rolled from one end of the book to the other.

your brief discussion/description/explanation: Initial speed the least, average speed, fastest is the final speed. It increased with an increasing speed as it rolled down the book.

#$&*

Devise and conduct an experiment to determine whether or not the object is speeding up as it rolls down the incline. If you have set the experiment up as indicated, it should seem pretty obvious that the object is in fact speeding up. But figure out a way to use actual measurements to support your belief.

Explain how you designed and conducted your experiment, give your data and explain how your data support your conclusions.

your brief discussion/description/explanation: I took the length it rolled and divided by half and marked this spot on the book (20.45 mm). I then took 3 measurments each of the time it took to roll down the top half, then the bottom half. On the bottom half, it initated at the top half, I only started recording once it reached the center line. I did this to help with descrepancies with me messing with the timer midpoint. The average speed on the bottom half, lower end of the ramp, was faster. Here are my measurments.

Top half:

.9453125 seconds

1.0625 seconds

1.21875 seconds

Avg speed: 19.2 cm/s

Bottom half:

.953125 seconds

.640625 seconds

1.0625 seconds

Avg speed: 24.2 cm/s

#$&*

Your instructor is trying to gauge the typical time spent by students on these experiments. Please answer the following question as accurately as you can, understanding that your answer will be used only for the stated purpose and has no bearing on your grades:

Approximately how long did it take you to complete this experiment? 1 hour and 40 minutes. I think because I'm more visual and it takes time to read and interpret setting up.

#$&*

You may also include optional comments and/or questions.

#$&*

*#&!

&#Good responses. Let me know if you have questions. &#