Query 3

course Phy 232

6/15 10I was unable to do the last problem of this query because the given problem number did not match the book.

Question: query intro set problem 14 substance, water, both temperatures and masses known, final temperature known, find spec ht

Explain how the final temperature of the system is combined with the known initial temperatures and masses of both substances to obtain the unknown specific heat

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

The amount of energy lost or gained by a substance is found with the equation q=m*c*change in temp where m is the mass of the substance and c is the specific heat capacity. When a substance is added to a calorimeter the substance will exchange heat energy with the water until the two are at thermal equilibrium. Therefore, the energy lost by one substance is gained by the other. In terms of the equation for q, this is represented as m*c*change in temp of substance 1 = -m*c*change in temp of substance 2. Therefore, filling in this equality with all of the known values will allow you to find the unknown specific heat.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The change in the thermal energy of an isolated system is 0. So assuming that the systems are isolated the thermal energy change of one object is equal and opposite to that of the other.

For an ideal substance the change in the thermal energy of an object is directly proportional to the change in its temperature and to its mass (i.e., more mass and more change in temperature implies more change in thermal energy). The specific heat is the proportionality constant for the substance. Using `dQ for the change in the thermal energy of an object we can express this as

• `dQ = mass * specific heat * `dT.

(General College and University Physics students note that most substances do not quite behave in this ideal fashion; for most substances the specific heat is not in fact strictly constant and for most substances changes with temperature.)

For two objects combined in a closed system we have `dQ1 + `dQ2 = 0, which gives us the equation

• m1 c1 `dT1 + m2 c2 `dT2 = 0

or equivalently

• m1 c1 `dT1 = - m2 c2 `dT2.

That is, whatever energy one substance loses, the other gains.

In this situation we know the specific heat of water, the two temperature changes and the two masses. We can therefore solve this equation for specific heat c2 of the unknown substance. **

Your Self-Critique: OK

Your Self-Critique rating #$&* OK

*********************************************

Question: prin phy Ch 13.26. Kelvin temperatures corresponding to 86 C, 78 F, -100 C, 5500 C and -459 F.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The Kelvin temperature is 273 K higher than the Celsius temperature (actually 273.15 below, but the degree of precision in the given temperatures is not sufficient to merit consideration of tenths or hundredths of a degree).

• 86 C, -100 C and 5500 C are therefore equivalent to ( 86 + 273 ) K = 359 K, -100 + 273 K = 173 K, (5500 + 273) K = 5773 K.

The freezing point of water is 0 C or 32 F, and a Fahrenheit degree is 5/9 the size of a Celsius degree. Therefore

• 78 F is (78 F - 32 F) = 46 F above the freezing point of water.

• 46 Fahrenheit degrees is the same as (5/9 C / F ) * 46 F = 26 C above freezing.

• Since freezing is at 0 C, this means that the temperature is 26 C.

• The Kelvin temperature is therefore (26 + 273) K = 299 K.

Similar reasoning can be used to convert -459 F to Celsius

• -459 F is (459 + 32) F = 491 F below freezing, or (5/9 C / F) * (-491 F) = 273 C below freezing.

• This is -273 C or (-273 + 273) K = 0 K.

• This is absolute zero, to the nearest degree.

Your Self-Critique:

Your Self-Critique rating #$&*

*********************************************

Question: prin phy and gen phy Ch 13.30 air at 20 C is compressed to 1/9 of its original volume. Estimate the temperature of the compressed air assuming the pressure reaches 40 atm.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

First we reason this out intuitively:

If the air was compressed to 1/9 its original volume and the temperature didn’t change, it would end up with 9 times its original pressure.

However the pressure changes from 1 atm to 40 atm, which is a 40-fold increase.

The only way the pressure could end up at 40 times the original pressure, as opposed to 9 times the original, would be to heat up. Its absolute temperature would therefore have to rise by afactor of 40 / 9.

Its original temperature was 20 C = 293 K, so the final temperature would be 293 K * 40/9, or over 1300 K.

Now we reason in terms of the ideal gas law.

P V = n R T.

In this situation the number of moles n of the gas remains constant. Thus P V / T = n R, which is constant, and thus P1 V1 / T1 = P2 V2 /T2.

The final temperature T2 is therefore

• T2 = (P2 / P1) * (V2 / V1) * T1.

From the given information P2 / P1 = 40 and V2 / V1 = 1/9 so

• T2 = 40 * 1/9 * T1.

The original temperature is 20 C = 293 K so that T1 = 293 K, and we get

• T2 = 40 * 1/9 * 293 K,

the same result as before.

Your Self-Critique:

Your Self-Critique rating #$&*

*********************************************

Question: query gen phy ch 13.38 fraction of air released after tire temp increases from 15 to 38 C at 220 kPa gauge

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

(Note that the given 220 kPa initial gauge pressure implies an absolute pressure of 311 k Pa; assuming atmospheric pressure of about 101 k Pa, we add this to the gauge pressure to get absolute pressure.

Remember that the gas laws are stated in terms of absolute temperature and pressure.

The gas goes through three states. The temperature and pressure change between the first and second states, leaving the volume and the number n of moles constant. Between the second and thirdstates pressure returns to its original value while volume remains constant and the number n of moles decreases.

From the first state to the second:

T1 = 288 K, T2 = 311 K so T2 / T1 = 311 / 288 = 1.08, approx.

This is approx. an 8% increase in temperature. The pressure must therefore rise to

P2 = 3ll / 288 * 321 kPa = 346 kPa, approx

(note that we have to use actual rather than gauge pressure so init pressure is 220 kPa + 101 kPa = 321 kPa, approx. )

From the second state to the third, pressure is then released by releasing some gas, changing the number n of moles of gas in order to get pressure back to 331 kPa. Thus

n3 / n2 = P3 / P2 = 321 kPa / 346 kPa or approximately .93, which would be about a 7% decrease. So we have to release about 7% of the air.

Note that these calculations have been done mentally, and they might not be particularly accurate. Work out the process to botain the accurate numerical results.

Note also that temperature changes from the second to third state were not mentioned in the problem; in reality we would expect a temperature change to accompany the release of the air.

Your Self-Critique:

Your Self-Critique rating #$&*

*********************************************

Question: query univ phy 17.116 (15.106 10th edition) 1.5 * 10^11 m, 1.5 kW/m^2, sun rad 6.96 * 10^8 m.

How did you calculate the total radiation of the Sun and how did you use this result to get the radiation per unit area?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

First, the total area over which the energy from the sun is distributed must be found. This is done by using the distance between the earth and the sun as the radius of the sphere: 4*pi*(1.50*10^11 m)^2 = 9*10^22 pi m^2.

Next, the total energy radiated from the sun is found by multiplying this previous value by the energy per square meter that the earth receives from the sun: (9*10^22 pi m^2) * 1.50 kW/m^2 = 1.35*10^23 pi kW.

Finally, the find the energy radiated from the sun per unit area, this value is divided by the surface area of the sun: (1.35*10^23 pi kW)/(4*pi*[6.96*10^8 m]^2) = 7.54*10^4 kW/m^2.

As an ideal blackbody, the emissivity value would be 1. Furthermore, with the heat current value known, the temperature of the Sun’s surface can be found with the Stefan-Boltzmann law: 1.35*10^26 pi W = 1.94 *10^18 pi m^2 * 5.6704*10^-8 W/m^2*K^4 * T^4.

T = 5.92*10^3 K

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Outline of solution strategy:

If we multiply the number of watts per unit of area by the surface area of the Sun we get the number of watts radiated from the Sun.

The energy flows outward in a spherically symmetric manner; at any distance the entire power is distributed over the radius of a sphere concentric with the Sun and of radius equal to the distance.

So if we divide that number of watts by the area of a sphere whose radius is equal to that of the Earth’s orbit, we get the number of watts per unit of area at that distance.

This strategy is followed in the student solution given below:

Good student solution:

Surface area of sphere of radius r is 4 pi r^2; if flux intensity is I then flux = 4 pi r^2 I.

When r = 1.5 * 10^11 m, I = 1500 W / m^2, so the flux is 4 pi r^2 I = 4 pi * (1.5 * 10^11 m)^2 * 1500 W / m^2 = 4.28 * 10^26 watts.

4.28055 x 10 ^ 26 W / (4*`pi * (6.96 x 10 ^ 8 m)^2) = 4.28055 x 10 ^ 26 W / 6.08735 x 10 ^ 18 m^2 = 70318775.82 J/s/m^2 = 7.03 x 10 ^ 7 J/s/m^2

If the sun is radiating as an ideal blackbody, e = 1, then T would be found as follows:

H = `dQ/`dt = 4.28055 x 10 ^ 26 W = (4*`pi * (6.96 x 10 ^ 8 m)^2) * (1) * (5.67051 x 10^-8 W/m^2*K) * T^4

So T^ 4 = 4.28055 x 10 ^ 26 W / 6.087351 x 10 ^ 18 m^2) * 1 * (5.67051 x 10^-8 W/m^2*K)

T^4 = 1.240 * 10 ^ 15 K ^4

T = 5934.10766 K on surface of sun. **

Your Self-Critique: OK

Your Self-Critique rating #$&* OK

*********************************************

Question: univ phy 17.115 time to melt 1.2 cm ice by solar radiation 600 w/m^2, 70% absorption, environment at 0 C.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

The given problem number does not correspond the to the correct problem in the book so I was unable to do this problem.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Thermal energy is not radiating in significant quantities from the ice, so only the incoming radiation needs to be considered, and as stated only 70% of that energy is absorbed by the ice..

• 70% of the incoming 600 watts/m^2 is 420 watts / m^2, or 420 Joules/second for every square meter if ice.

• Melting takes place at 0 C so there is no thermal exchange with the environment. Thus each square meter absorbs 420 Joules of energy per second.

We need to consider the volume of ice corresponding to a square meter. Having found that we can determine the energy required to melt the given thickness:

• A 1.2 cm thickness of ice will have a volume of .012 m^3 for every square meter of surface area; the mass will be close to 1000 kg/m^3, so there are about 12 kg of ice for every m^2 of surface (you can obtain a more accurate result by using the a more accurate density; the density of ice (which floats in water) is actually somewhat less than that of water).

• It takes about 330,000 Joules to melt a kg of ice at 0 C, so to melt 12 kg requires around 4,000,000 J. At 420 Joules/sec this will require roughly 10,000 seconds, or around 3 hours.

All these calculations were done mentally and are therefore approximate. You should check them yourself, using appropriately precise values of the constants, etc. **

"

&#This looks good. Let me know if you have any questions. &#

*&$*&$