Query Asst 29

course Phy 122

I have just a few questions about the upcoming assignments. I noticed that on our due date timetable, assignments 32 and 33 are included. However, on the assignments list, 32 and 33 are not listed. Have these two assignments been omitted? Also, I do not see a link for the query programs for assignments 31-41. Does this mean that, besides the problem sets and book problems, there is no query program for the rest of these assignments? I just thought I should ask instead of making assumptions.One last thing, Could you please tell me my score for my last test on fluids and thermodynamics? Also, I was looking ahead on our schedule and I read that the final exam may be optional for principles of physics students. Is this correct? Thank you for your time.

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

" "ђ~zC͙ʨb

assignment #029

029. `Query 18

Physics II

07-16-2007

......!!!!!!!!...................................

20:46:47

Principles of Physics and General Physics Problem 24.14: By what percent does the speed of red light exceed that of violet light in flint glass?

......!!!!!!!!...................................

RESPONSE -->

Sections 23-4 and 24-4 in the text were useful in answering this problem.

We know that the index of refraction is inversely related to the speed of light. From the flint glass line on the chart in section 24-4, we can see that the index of refraction for red light is about 1.625 and the index for violet light is about 1.670. Therefore, the proportion of the violet to red is:

n_violet / n_red = 1.670 / 1.625 = 1.028.

Therefore, the index of refraction for violet light is about 102.8% of the index of red or you could say that the violet is 2.8% greater.

Since the speed of light and the index of refraction are inversely proportional, we know that if the violet index of refraction is 2.8% greater, the speed of red light exceeds the speed of violet by the same percent, 2.8%.

.................................................

......!!!!!!!!...................................

20:48:47

The respective indices of refraction for violet and red light in flint glass appear from the given graph to be about 1.665 and 1.620.

The speed of light in a medium is inversely proportional to the index of refraction of that medium, so the ratio of the speed of red to violet light is the inverse 1.665 / 1.62 of the ratio of the indices of refraction (red to violet). This ratio is about 1.0028, or 100.28%. So the precent difference is about .28%.

It would also be possible to figure out the actual speeds of light, which would be c / n_red and c / n_violet, then divide the two speeds; however since c is the same in both cases the ratio would end up being c / n_red / ( c / n_violet) = c / n_red * n_violet / c = n_violet / n_red, and the result would be the same as that given above.

......!!!!!!!!...................................

RESPONSE -->

I understand this problem. My interpretations of the indices on the graph were slightly different. Also, in the solution it reads:

1.665 / 1.62 = 1.0028 --> 100.28%

But it is actually: 1.665 / 1.62 = 1.028 --> 102.8%

.................................................

......!!!!!!!!...................................

20:49:05

**** query gen phy problem 24.34 width of 1st-order spectrum of white light (400 nm-750nm) at 2.3 m from a 7500 line/cm grating **** gen phy what is the width of the spectrum?

......!!!!!!!!...................................

RESPONSE -->

I am not a general physics student and I was not assigned this problem.

.................................................

......!!!!!!!!...................................

20:49:50

GOOD STUDENT SOLUTION

We are given that the spectrum is from 400-750 nm. We are also given that the screen is 2.3 meters away and that the grating is 7500 lines/cm. To find this I will find where 400 nm wavelength falls on the screen and also where 750 nm wavelength falls onto the screen. Everything in between them will be the spectrum. I will use the formula...

sin of theta = m * wavelength / d

since these are first order angles m will be 1.

since the grating is 7500 lines/cm, d will be 1/7500 cm or 1/750000 m.

Sin of theta(400nm) =

1 * (4.0 * 10^-7)/1/750000

sin of theta (400nm) = 0.300

theta (400nm) = 17.46 degrees

This is the angle that the 1st order 400nm ray will make.

sin of theta (750nm) = 0.563

theta (750nm) = 34.24 degrees

This is the angle that the 1st order 750 nm ray will make.

We were given that the screen is 2.3 meters away. If we draw an imaginary ray from the grating to to the screen and this ray begins at the focal point for the rays of the spectrum and is perpendicular to the screen (I will call this point A), this ray will make two triangles, one with the screen and the 400nm angle ray and one with the screen and the 750 nm angle ray. Using the trigonomic function; tangent, we can solve for the sides of the triangles which the screen makes up.

Tan of theta = opposite / adjacent

tan of 34.24 degrees = opposite / 2.3 meters

0.6806 = opposite / 2.3 meters

opposite = 1.57 meters

tan of 17.46 degrees = opposite / 2.3 meters

opposite = 0.72 meters

So from point A to where the angle(400nm) hits the screen is 0.72 meters.

And from point A to where the angle(750nm) hits the screen is 1.57 meters.

If you subtract the one segment from the other one you will get the length of the spectrum on the screen.

1.57 m - 0.72 m = 0.85 meters is the width of the spectrum on the screen.

CORRECTION ON LAST STEP:

spectrum width = 2.3m * tan (31.33)) - 2.3m * tan (17.45) = 0.68m

......!!!!!!!!...................................

RESPONSE -->

I understand the concepts:

sin of theta = m * wavelength / d

and

Tan of theta = opposite / adjacent

.................................................

......!!!!!!!!...................................

20:50:02

**** query univ phy 36.59 phasor for 8 slits

......!!!!!!!!...................................

RESPONSE -->

I am not a university physics student.

.................................................

......!!!!!!!!...................................

20:50:12

** If you look at the phasor diagram for phi = 3 pi / 4 you will see that starting at any vector the fourth following vector is in the opposite direction. So every slit will interfere destructively with the fourth following slit. This is because 4 * 3 pi / 4 is an odd multiple of pi.

The same spacing will give the same result for 5 pi / 4 and for 7 pi / 4; note how starting from any vector it takes 4 vectors to get to the antiparallel direction.

For 6 pi / 4, where the phasor diagram is a square, every slit will interfere destructively with the second following slit.

For phi = pi/4 you get an octagon.

For phi = 3 pi / 4 the first vector will be at 135 deg, the second at 270 deg (straight down), the third at 415 deg (same as 45 deg, up and to the right). These vectors will not close to form a triangle. The fourth vector will be at 45 deg + 135 deg = 180 deg; i.e., horizontal to the left. The next two will be at 315 deg (down and toward the right) then 90 deg (straight up). The last two will be at 225 deg (down and to left) and 360 deg (horiz to the right).

The resulting endpoint coordinates of the vectors, in order, will be

-0.7071067811, .7071067811

-0.7071067811, -0.2928932188

0, 0.4142135623

-1, 0.4142135623

-0.2928932188, -0.2928932188

-0.2928932188, 0.7071067811

-1, 0

0, 0

For phi = 5 pi / 4 each vector will 'rotate' relative to the last at angle 5 pi / 4, or 225 deg. To check yourself the first few endpoints will be

-0.7070747217, -0.7071290944;

-0.7070747217, 0.2928709055;

0, -0.4142040038

and the final endpoint will again be (0, 0).

For 6 pi / 4 you will get a square that repeats twice.

For 7 pi / 4 you get an octagon.

NEW PROBLEM: The longest wavelength is 700 nm and slit spacing is about 1250 nm. The path difference can't exceed the slit spacing, which is less than double the 700 nm spacine. So there are at most central max (path difference zero) and the first-order max (path difference one wavelength).

Note that there will be a second-order max for wavelengths less than about 417 nm. **

......!!!!!!!!...................................

RESPONSE -->

Ok.

.................................................

"

&#

Your work looks very good. Let me know if you have any questions. &#