#$&* course Phy 232 5/30 10 PC1 questions
.............................................
Given Solution: `aThe point (3,5) has x coordinate 3 and y coordinate 5. The point (7, 17) has x coordinate 7 and y coordinate 17. To move from (3,5) to (7, 17) we must therefore move 4 units in the x direction and 12 units in the y direction. Thus between (3,5) and (7,17) the rise is 12 and the run is 4, so the rise/run ratio is 12/4 = 3. Between (7,10) and (10,29) the rise is also 12 but the run is only 3--same rise for less run, therefore more slope. The rise/run ratio here is 12/3 = 4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `q002. The expression (x-2) * (2x+5) is zero when x = 2 and when x = -2.5. Without using a calculator verify this, and explain why these two values of x, and only these two values of x, can make the expression zero. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To find the zeros, you take both expressions inside the parentheses and set them equal to zero. This works because we need the total expression to be zero and since both individual expressions are multiplied, it means only one needs to be equal to zero for the whole expression to equal 0. So, x-2=0 x=2 We have verified the first zero of x=2. 2x+5=0 2x=-5 x=-2.5 This verifies that -2.5 is indeed a zero. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aIf x = 2 then x-2 = 2 - 2 = 0, which makes the product (x -2) * (2x + 5) zero. If x = -2.5 then 2x + 5 = 2 (-2.5) + 5 = -5 + 5 = 0.which makes the product (x -2) * (2x + 5) zero. The only way to product (x-2)(2x+5) can be zero is if either (x -2) or (2x + 5) is zero. Note that (x-2)(2x+5) can be expanded using the Distributive Law to get x(2x+5) - 2(2x+5). Then again using the distributive law we get 2x^2 + 5x - 4x - 10 which simplifies to 2x^2 + x - 10. However this doesn't help us find the x values which make the expression zero. We are better off to look at the factored form. STUDENT QUESTION I think I have the basic understanding of how x=2 and x=-2.5 makes this equation 0 I was looking at the distributive law and I understand the basic distributive property as stated in algebra a (b + c) = ab + ac and a (b-c) = ab - ac but I don’t understand the way it is used here (x-2)(2x+5) x(2x+5) - 2(2x+5) 2x^2 + 5x - 4x - 10 2x^2 + x - 10. Would you mind explaining the steps to me? INSTRUCTOR RESPONSE The distributive law of multiplication over addition states that a (b + c) = ab + ac and also that (a + b) * c = a c + b c. So the distributive law has two forms. In terms of the second form it should be clear that, for example (x - 2) * c = x * c - 2 * c. Now if c = 2 x + 5 this reads (x-2)(2x+5) = x * ( 2 x + 5) - 2 * (2 x + 5). The rest should be obvious. We could also have used the first form. a ( b + c) = ab + ac so, letting a stand for (x - 2), we have (x-2)(2x+5) = ( x - 2 ) * 2x + (x - 2) * 5. This will ultimately give the same result as the previous. Either way we end up with 2 x^2 + x - 10. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I failed to discuss distributing the expressions out to further explain the concepts. Doing so can better explain the idea to the reader. ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: `q003. For what x values will the expression (3x - 6) * (x + 4) * (x^2 - 4) be zero? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This problem is similar to before but now there are 3 sets of parentheses. The only difference is that we will have to solve for three expressions which will result in three zeros. 3x-6=0 3x=6 x=2 x+4=0 x=-4 x^2-4=0 x^2=4 x=2,-2 You do the positive and negative of a number when you take the square root. Therefore, the three zeros are 2,-4 and 2,-2. However, since the 2 is repeated we do not repeat it twice since it is the same zero. In result, the zeros are 2,-4 and -2. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aIn order for the expression to be zero we must have 3x-6 = 0 or x+4=0 or x^2-4=0. 3x-6 = 0 is rearranged to 3x = 6 then to x = 6 / 3 = 2. So when x=2, 3x-6 = 0 and the entire product (3x - 6) * (x + 4) * (x^2 - 4) must be zero. x+4 = 0 gives us x = -4. So when x=-4, x+4 = 0 and the entire product (3x - 6) * (x + 4) * (x^2 - 4) must be zero. x^2-4 = 0 is rearranged to x^2 = 4 which has solutions x = + - `sqrt(4) or + - 2. So when x=2 or when x = -2, x^2 - 4 = 0 and the entire product (3x - 6) * (x + 4) * (x^2 - 4) must be zero. We therefore see that (3x - 6) * (x + 4) * (x^2 - 4) = 0 when x = 2, or -4, or -2. These are the only values of x which can yield zero.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `q004. One straight line segment connects the points (3,5) and (7,9) while another connects the points (10,2) and (50,4). From each of the four points a line segment is drawn directly down to the x axis, forming two trapezoids. Which trapezoid has the greater area? Try to justify your answer with something more precise than, for example, 'from a sketch I can see that this one is much bigger so it must have the greater area'. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To find the area of a trapezoid, you need to do area=.5(b1+b2)h The bases are the lengths of the two lines that are parallel. The height is the distance between these lines. The height of a trapezoid, in this case, is found by subtracting the x-values.Since our trapezoids are drawn to the x-axis, the base length is just the y-value. So height of first trapezoid= 7-3=4 h=4 base1 of first trapezoid= ycoordinate1=5 base2 of first trapezoid= ycoordinate2=9 Using the forumula, area=.5(5+9)4=.5(14)4=28 height of second trapezoid= 50-10=40 h=40 base1 of second trapezoid= ycoordinate1=2 base2 of second trapezoid= ycoordinate2=4 Using the forumula, area=.5(2+4)40=.5(6)40=120 Therefore, the second trapezoid is substantially larger than the first. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aYour sketch should show that while the first trapezoid averages a little more than double the altitude of the second, the second is clearly much more than twice as wide and hence has the greater area. To justify this a little more precisely, the first trapezoid, which runs from x = 3 to x = 7, is 4 units wide while the second runs from x = 10 and to x = 50 and hence has a width of 40 units. The altitudes of the first trapezoid are 5 and 9,so the average altitude of the first is 7. The average altitude of the second is the average of the altitudes 2 and 4, or 3. So the first trapezoid is over twice as high, on the average, as the first. However the second is 10 times as wide, so the second trapezoid must have the greater area. This is all the reasoning we need to answer the question. We could of course multiply average altitude by width for each trapezoid, obtaining area 7 * 4 = 28 for the first and 3 * 40 = 120 for the second. However if all we need to know is which trapezoid has a greater area, we need not bother with this step. ********************************************* Question: `q005. Sketch graphs of y = x^2, y = 1/x and y = `sqrt(x) [note: `sqrt(x) means 'the square root of x'] for x > 0. We say that a graph increases if it gets higher as we move toward the right, and if a graph is increasing it has a positive slope. Explain which of the following descriptions is correct for each graph: As we move from left to right the graph increases as its slope increases. As we move from left to right the graph decreases as its slope increases. As we move from left to right the graph increases as its slope decreases. As we move from left to right the graph decreases as its slope decreases. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The best way to show the yvalues that result from given xvalues. As an example, I will use x=1,2,3. o was not used to avoid a cased of the graph being undefined and the data being useless. For graph y = x^2, the yvalues happen to be 1,4 and 9. Therefore, y values are increasing at a greater rate so the graph increases as its slope increases. For graph y = 1/x, the yvalues happen to be 1, .5 and 0.333. Therefore, y values are decreasing at a smaller rate so the graph decreases as its slope decreases. For graph y = sqrt(x), the yvalues happen to be 1, 1.41 and 1.73. Therefore, y values are increasing at a smaller rate so the graph increases as its slope decreases. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aFor x = 1, 2, 3, 4: The function y = x^2 takes values 1, 4, 9 and 16, increasing more and more for each unit increase in x. This graph therefore increases, as you say, but at an increasing rate. The function y = 1/x takes values 1, 1/2, 1/3 and 1/4, with decimal equivalents 1, .5, .33..., and .25. These values are decreasing, but less and less each time. The decreasing values ensure that the slopes are negative. However, the more gradual the decrease the closer the slope is to zero. The slopes are therefore negative numbers which approach zero. Negative numbers which approach zero are increasing. So the slopes are increasing, and we say that the graph decreases as the slope increases. We could also say that the graph decreases but by less and less each time. So the graph is decreasing at a decreasing rate. For y = `sqrt(x) we get approximate values 1, 1.414, 1.732 and 2. This graph increases but at a decreasing rate. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I missed the second graph in thinking of the slope more in a sense of magnitude. I know the value of the slope's number is increasing, but I always thought of it as the magnitude so the sign value would have little effect. It is good to know that I have been doing it incorrectly and now know how to do solve the problem efficiently. ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q006. If the population of the frogs in your frog pond increased by 10% each month, starting with an initial population of 20 frogs, then how many frogs would you have at the end of each of the first three months (you can count fractional frogs, even if it doesn't appear to you to make sense)? Can you think of a strategy that would allow you to calculate the number of frogs after 300 months (according to this model, which probably wouldn't be valid for that long) without having to do at least 300 calculations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The simple method is to multiply the amount of frogs by the increase decimal percentage and add that to the original. Month 1---20*.1=2+20=22 frogs Month 2---22*.1=2.2+22=24.2 frogs Month 3---24.2*.1=2.42+24.2=26.62 frogs Without looking it up or looking at the solution, I was unsure of how to do this. However, after reading the solution it makes sense why you would do 20*1.1^300. confidence rating #$&*:2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aAt the end of the first month, the number of frogs in the pond would be (20 * .1) + 20 = 22 frogs. At the end of the second month there would be (22 * .1) + 22 = 24.2 frogs while at the end of the third month there would be (24.2 * .1) + 24.2 = 26.62 frogs. The key to extending the strategy is to notice that multiplying a number by .1 and adding it to the number is really the same as simply multiplying the number by 1.1. We therefore get 20 * 1.1 = 22 frogs after the first month 22 * 1.1 = 24.2 after the second month etc., multiplying by for 1.1 each month. So after 300 months we will have multiplied by 1.1 a total of 300 times. This would give us 20 * 1.1^300, whatever that equals (a calculator, which is appropriate in this situation, will easily do the arithmetic). A common error is to say that 300 months at 10% per month gives 3,000 percent, so there would be 30 * 20 = 600 frogs after 30 months. That doesn't work because the 10% increase is applied to a greater number of frogs each time. 3000% would just be applied to the initial number, so it doesn't give a big enough answer. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q007. Calculate 1/x for x = 1, .1, .01 and .001. Describe the pattern you obtain. Why do we say that the values of x are approaching zero? What numbers might we use for x to continue approaching zero? What happens to the values of 1/x as we continue to approach zero? What do you think the graph of y = 1/x vs. x looks for x values between 0 and 1? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: When you divide by a number less than 1, it increases the value answer. It is like dividing by a fraction which in turn multiplies the denominator of the second fraction by the numerator. For y=1/x with x values of 1,0.1,0.01 and 0.001.The xvalues come out to be 1, 10, 100 and 1000. This is done using the method described above. We say that the values are approaching zero because they are getting smaller and smaller without reaching zero or going negative. We might use 0.0001 and 0.00001 to show that the values are approaching zero. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aIf x = .1, for example, 1 / x = 1 / .1 = 10 (note that .1 goes into 1 ten times, since we can count to 1 by .1, getting.1, .2, .3, .4, ... .9, 10. This makes it clear that it takes ten .1's to make 1. So if x = .01, 1/x = 100 Ithink again of counting to 1, this time by .01). If x = .001 then 1/x = 1000, etc.. Note also that we cannot find a number which is equal to 1 / 0. Deceive why this is true, try counting to 1 by 0's. You can count as long as you want and you'll ever get anywhere. The values of 1/x don't just increase, they increase without bound. If we think of x approaching 0 through the values .1, .01, .001, .0001, ..., there is no limit to how big the reciprocals 10, 100, 1000, 10000 etc. can become. The graph becomes steeper and steeper as it approaches the y axis, continuing to do so without bound but never touching the y axis. This is what it means to say that the y axis is a vertical asymptote for the graph . &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `q008. At clock time t the velocity of a certain automobile is v = 3 t + 9. At velocity v its energy of motion is E = 800 v^2. What is the energy of the automobile at clock time t = 5? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: All the equations are easily listed out for this problem. First, you will need to solve for v at time t=5. v(5)=24. Then, plug v into the energy equation to find E. E=800*24^2=800*576=460800. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aFor t=5, v = 3 t + 9 = (3*5) + 9 = 24. Therefore E = 800 * 24^2 = 460800. • ********************************************* Question: `q009. Continuing the preceding problem, can you give an expression for E in terms of t? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This problem is simple to do by replacing v in the energy equation with the expression provided. Since v=3 t + 9, substitute v for 3t+9. In result, we get E=800*(3t+9)^2. Foil out the (3t+9)(3t+9)=(9t^2+52t+81)*800 E=7200t^2+41600t+64800 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aSince v = 3 t + 9 the expression would be E = 800 v^2 = 800 ( 3t + 9) ^2. This is the only answer really required here. For further reference, though, note that this expression could also be expanded by applying the Distributive Law:. Since (3t + 9 ) ^ 2 = (3 t + 9 ) * ( 3 t + 9 ) = 3t ( 3t + 9 ) + 9 * (3 t + 9) = 9 t^2 + 27 t + 27 t + 81 = 9 t^2 + 54 t + 81, we get E = 800 ( 9 t^2 + 54 t + 81) = 7200 t^2 + 43320 t + 64800 (check my multiplication because I did that in my head, which isn't always reliable). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK I got the same numbers as you did so I feel it is safe to assume that your caluclated numbers are correct. ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: For what x values is the value of the expression (2^x - 1) ( x^2 - 25 ) ( 2x + 6) zero? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Like before, we need to set each expression equal to zero. (2^x - 1)=0 2^x=1 anything to the 0 power equals 1 so if x=0, the expression would be 1-1=0 so x=0 ( x^2 - 25 )=0 x^2=25 x=5,-5 ( 2x + 6)=0 2x=-6 x=-3 The zeros are -5,-3,0 and 5. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ********************************************* Question: One straight line segment connects the points (3,5) and (7,9) while another connects the points (3, 10) and (7, 6). From each of the four points a line segment is drawn directly down to the x axis, forming two trapezoids. Which trapezoid has the greater area? Any solution is good, but a solution that follows from a good argument that doesn't actually calculate the areas of the two trapezoids is better. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution:After sketching the two trapezoids, it is clear which one is larger but not by a vast amount. The xvalues for both of these problems are the same so that part of the equation is not meaningful as of now. The yvalues are the same distance apart, but the values of one are larger. Since the trapezoids are drawn to the xaxis, the larger y, in this case, will have to the larger area. Therefore, the second traapezoids area is larger. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ********************************************* Question: Suppose you invest $1000 and, at the end of any given year, 10% is added to the amount. How much would you have after 1, 2 and 3 years? What is an expression for the amount you would have after 40 years (give an expression that could easily be evaluated using a calculator, but don't bother to actually evaluate it)? What is an expression for the amount you would have after t years? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Year1 $1000*1.1=$1100 Year2 $1100*1.1=$1210 Year3 $1210*1.1=$1331 1000*1.1^40 1000*1.1^t confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ------------------------------------------------ Self-critique Rating:OK" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: