#$&*
Phy 241
Your 'cq_1_01.1' report has been received. Scroll down through the document to see any comments I might have inserted, and my final comment at the end.
** **
The problem:
Here is the definition of rate of change of one quantity with respect to another:
The average rate of change of A with respect to B on an interval is
average rate of change of A with respect to B = (change in A) / (change in B)
Apply the above definition of average rate of change of A with respect to B to each of the following. Be sure to identify the quantity A, the quantity B and the requested average rate.
If the position of a ball rolling along a track changes from 10 cm to 20 cm while the clock time changes from 4 seconds to 9 seconds, what is the average rate of change of its position with respect to clock time during this interval?
answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):
#$&* The average rate of change of its position with respect to clock time is (20cm - 10cm)/(9sec - 4sec) = 10cm/5sec = 2cm/sec.
If the velocity of a ball rolling along a track changes from 10 cm / second to 40 cm / second during an interval during which the clock time changes by 3 seconds, then what is the average rate of change of its velocity with respect to clock time during this interval?
answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):
#$&* The average rate of change is (40cm/sec - 10cm/sec)/3sec = (30cm/sec)/3sec = 10
@& The number 10 is correct, but you also need to include units.*@
If the average rate at which position changes with respect to clock time is 5 cm / second, and if the clock time changes by 10 seconds, by how much does the position change?
answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):
#$&* The average rate is 10sec/(5cm/sec) = 2cm
@& 5 cm/sec is the average rate. It is equal to the change in one quantity divided by the change in another.*@
You will be expected hereafter to know and apply, in a variety of contexts, the definition given in this question. You need to know this definition word for word. If you try to apply the definition without using all the words it is going to cost you time and it will very likely diminish your performance. Briefly explain how you will ensure that you remember this definition.
answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):
#$&*I can remember this definition by change of A with respect to B, the change of A will always be on the numerator then divided by change of B in the denominator. Also with the use of this formula in a couple of exercises help me memorize it better.
You are asked in this exercise to apply the definition, and given a general procedure for doing so. Briefly outline the procedure for applying this definition, and briefly explain how you will remember to apply this procedure.
answer/question/discussion: ->->->->->->->->->->->-> (start in the next line):
#$&* The procedure will be that a change in a data with respect
to a change to another data and divide will make me remember how to apply the definition.
Copy and paste your work into the box below and submit as indicated:
Your instructor is trying to gauge the typical time spent by students on these questions. Please answer the following question as accurately as you can, understanding that your answer will be used only for the stated purpose and has no bearing on your grades:
** **
About 50 minutes.
** **
See any notes I might have inserted into your document, and before looking at the link below see if you can modify your solutions. If there are no notes, this does not mean that your solution is completely correct.
Then please compare your old and new solutions with the expanded discussion at the link
Solution
Self-critique your solutions, if this is necessary, according to the usual criteria. Insert any revisions, questions, etc. into a copy of this posted document. Mark any insertions with &&&& so they can be easily identified.If your solution is completely consistent with the given solution, you need do nothing further with this problem.