cq_1_101

Phy 201

Your 'cq_1_10.1' report has been received. Scroll down through the document to see any comments I might have inserted, and my final comment at the end.

** **

A pendulum requires 2 seconds to complete a cycle, which consists of a complete back-and-forth oscillation (extreme point to equilibrium to opposite extreme point back to equilibrium and finally to the original extreme point). As long as the amplitude of the motion (the amplitude is the distance from the equilibrium position to the extreme point) is small compared to the length of the pendulum, the time required for a cycle is independent of the amplitude.

• How long does it take to get from one extreme point to the other, how long from an extreme point to equilibrium, and how long to go from extreme point to equilibrium to opposite extreme point and back to equilibrium?

#$&*

answer/question/discussion: ->->->->->->->->->->->-> :

If we are taking 2 seconds to complete an entire cycle then it will take 1 second to reach the extreme point and then start on the way back. So half of that will be when the pendulum is at equilibrium which is ½ second. So to get to extreme point and then back to equilibrium would take 1.5 seconds.

• What reasonable assumption did you make to arrive at your answers?

#$&*

answer/question/discussion: ->->->->->->->->->->->-> :

My assumption is that the pendulum is traveling at the same speed throughout the cycle.

** **

10 minutes

** **

&#See any notes I might have inserted into your document. If there are no notes, this does not mean that your solution is completely correct.

Then please compare your solutions with the expanded discussion at the link

Solution

Self-critique your solutions, if this is necessary, according to the usual criteria. Insert any revisions, questions, etc. into a copy of this posted document. Mark any insertions with &&&& so they can be easily identified.

If your solution is completely consistent with the given solution, you need do nothing further with this problem. &#

*&$*&$